4ZN8

Using molecular dynamics simulations to predict domain swapping of computationally designed protein variants


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Free: 0.312 
  • R-Value Work: 0.249 
  • R-Value Observed: 0.253 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Using Molecular Dynamics Simulations as an Aid in the Prediction of Domain Swapping of Computationally Designed Protein Variants.

Mou, Y.Huang, P.S.Thomas, L.M.Mayo, S.L.

(2015) J Mol Biol 427: 2697-2706

  • DOI: https://doi.org/10.1016/j.jmb.2015.06.006
  • Primary Citation of Related Structures:  
    4NDJ, 4NDK, 4ZN8

  • PubMed Abstract: 

    In standard implementations of computational protein design, a positive-design approach is used to predict sequences that will be stable on a given backbone structure. Possible competing states are typically not considered, primarily because appropriate structural models are not available. One potential competing state, the domain-swapped dimer, is especially compelling because it is often nearly identical with its monomeric counterpart, differing by just a few mutations in a hinge region. Molecular dynamics (MD) simulations provide a computational method to sample different conformational states of a structure. Here, we tested whether MD simulations could be used as a post-design screening tool to identify sequence mutations leading to domain-swapped dimers. We hypothesized that a successful computationally designed sequence would have backbone structure and dynamics characteristics similar to that of the input structure and that, in contrast, domain-swapped dimers would exhibit increased backbone flexibility and/or altered structure in the hinge-loop region to accommodate the large conformational change required for domain swapping. While attempting to engineer a homodimer from a 51-amino-acid fragment of the monomeric protein engrailed homeodomain (ENH), we had instead generated a domain-swapped dimer (ENH_DsD). MD simulations on these proteins showed increased B-factors derived from MD simulation in the hinge loop of the ENH_DsD domain-swapped dimer relative to monomeric ENH. Two point mutants of ENH_DsD designed to recover the monomeric fold were then tested with an MD simulation protocol. The MD simulations suggested that one of these mutants would adopt the target monomeric structure, which was subsequently confirmed by X-ray crystallography.


  • Organizational Affiliation

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
computationally modified engrailed homeodomain
A, B, C, D
51Drosophila melanogasterMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.00 Å
  • R-Value Free: 0.312 
  • R-Value Work: 0.249 
  • R-Value Observed: 0.253 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 51.456α = 90
b = 62.682β = 90
c = 76.698γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
DENZOdata reduction
SCALEPACKdata scaling
SOLVEphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2015-05-27
    Type: Initial release
  • Version 1.1: 2015-07-08
    Changes: Database references
  • Version 1.2: 2015-08-19
    Changes: Database references
  • Version 1.3: 2017-09-06
    Changes: Author supporting evidence, Data collection, Database references, Derived calculations
  • Version 1.4: 2019-11-27
    Changes: Author supporting evidence