Domain Annotation: SCOP2 Classification SCOP2 Database Homepage

ChainsTypeFamily Name Domain Identifier Family IdentifierProvenance Source (Version)
DSCOP2 FamilyProteasome subunits8064031 4002254 SCOP2 (2022-06-29)
DSCOP2 SuperfamilyClass II glutamine amidotransferases8064032 3000131 SCOP2 (2022-06-29)
RSCOP2B SuperfamilyClass II glutamine amidotransferases8064032 3000131 SCOP2B (2022-06-29)
ESCOP2 FamilyProteasome subunits8064023 4002254 SCOP2 (2022-06-29)
ESCOP2 SuperfamilyClass II glutamine amidotransferases8064024 3000131 SCOP2 (2022-06-29)
SSCOP2B SuperfamilyClass II glutamine amidotransferases8064024 3000131 SCOP2B (2022-06-29)
FSCOP2 FamilyProteasome subunits8064063 4002254 SCOP2 (2022-06-29)
FSCOP2 SuperfamilyClass II glutamine amidotransferases8064064 3000131 SCOP2 (2022-06-29)
TSCOP2B SuperfamilyClass II glutamine amidotransferases8064064 3000131 SCOP2B (2022-06-29)
ASCOP2 FamilyProteasome subunits8064069 4002254 SCOP2 (2022-06-29)
ASCOP2 SuperfamilyClass II glutamine amidotransferases8064070 3000131 SCOP2 (2022-06-29)
OSCOP2B SuperfamilyClass II glutamine amidotransferases8064070 3000131 SCOP2B (2022-06-29)
LSCOP2 FamilyProteasome subunits8079497 4002254 SCOP2 (2022-06-29)
LSCOP2 SuperfamilyClass II glutamine amidotransferases8079498 3000131 SCOP2 (2022-06-29)
ZSCOP2B SuperfamilyClass II glutamine amidotransferases8079498 3000131 SCOP2B (2022-06-29)
BSCOP2 FamilyProteasome subunits8064033 4002254 SCOP2 (2022-06-29)
BSCOP2 SuperfamilyClass II glutamine amidotransferases8064034 3000131 SCOP2 (2022-06-29)
PSCOP2B SuperfamilyClass II glutamine amidotransferases8064034 3000131 SCOP2B (2022-06-29)
CSCOP2 FamilyProteasome subunits8064027 4002254 SCOP2 (2022-06-29)
CSCOP2 SuperfamilyClass II glutamine amidotransferases8064028 3000131 SCOP2 (2022-06-29)
QSCOP2B SuperfamilyClass II glutamine amidotransferases8064028 3000131 SCOP2B (2022-06-29)
GSCOP2 FamilyProteasome subunits8064067 4002254 SCOP2 (2022-06-29)
GSCOP2 SuperfamilyClass II glutamine amidotransferases8064068 3000131 SCOP2 (2022-06-29)
USCOP2B SuperfamilyClass II glutamine amidotransferases8064068 3000131 SCOP2B (2022-06-29)
ISCOP2 FamilyProteasome subunits8064071 4002254 SCOP2 (2022-06-29)
ISCOP2 SuperfamilyClass II glutamine amidotransferases8064072 3000131 SCOP2 (2022-06-29)
WSCOP2B SuperfamilyClass II glutamine amidotransferases8064072 3000131 SCOP2B (2022-06-29)

Domain Annotation: ECOD Classification ECOD Database Homepage

ChainsFamily NameDomain Identifier ArchitecturePossible HomologyHomologyTopologyFamilyProvenance Source (Version)
DPF00227,PF10584e5fmgD1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
RPF00227,PF10584e5fmgR1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
EPF00227,PF10584e5fmgE1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
SPF00227,PF10584e5fmgS1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
FPF00227,PF10584e5fmgF1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
TPF00227,PF10584e5fmgT1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
HPF00227e5fmgH1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
VPF00227e5fmgV1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
JPF00227e5fmgJ1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
XPF00227e5fmgX1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
YPF00227e5fmgY1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
KPF00227e5fmgK1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
AA [auth a]PF00227e5fmga1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
MPF00227e5fmgM1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
APF00227,PF10584e5fmgA1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
OPF00227,PF10584e5fmgO1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
LPF00227e5fmgL1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
ZPF00227e5fmgZ1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
BA [auth b]PF00227e5fmgb1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
NPF00227e5fmgN1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
BPF00227,PF10584e5fmgB1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
PPF00227,PF10584e5fmgP1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
CPF00227,PF10584e5fmgC1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
QPF00227,PF10584e5fmgQ1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
GPF00227,PF10584e5fmgG1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
UPF00227,PF10584e5fmgU1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227,PF10584ECOD (1.6)
IPF00227e5fmgI1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)
WPF00227e5fmgW1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: PF00227ECOD (1.6)

Domain Annotation: CATH CATH Database Homepage

ChainDomainClassArchitectureTopologyHomologyProvenance Source (Version)
D3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
R3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
E3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
S3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
F3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
T3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
H3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
V3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
J3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
X3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
Y3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
K3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
AA [auth a]3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
M3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
A3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
O3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
L3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
Z3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
BA [auth b]3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
N3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
B3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
P3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
C3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
Q3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
G3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
U3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
I3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
W3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)

Protein Family Annotation Pfam Database Homepage

ChainsAccessionNameDescriptionCommentsSource
D, R
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
D, R
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
E, S
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
E, S
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
F, T
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
F, T
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
H, V
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
J, X
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
K, Y
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
A, O
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
A, O
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
L, Z
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
B, P
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
B, P
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
C, Q
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
C, Q
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
G, U
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
G, U
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
I, W
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain

Gene Ontology: Gene Product Annotation Gene Ontology Database Homepage

ChainsPolymerMolecular FunctionBiological ProcessCellular Component
D, R
PROTEASOME SUBUNIT ALPHA TYPE
E, S
PROTEASOME SUBUNIT ALPHA TYPE
F, T
PROTEOSOME SUBUNIT ALPHA TYPE 1, PUTATIVE
H, V
PROTEASOME, PUTATIVE
J, X
BETA3 PROTEASOME SUBUNIT, PUTATIVE
K, Y
PROTEASOME SUBUNIT BETA TYPE
AA [auth a],
M
PROTEASOME SUBUNIT BETA TYPE---
A, O
PROTEASOME SUBUNIT ALPHA, PUTATIVE
L, Z
PROTEASOME SUBUNIT BETA TYPE
BA [auth b],
N
PROTEASOME SUBUNIT BETA TYPE
B, P
PROTEASOME SUBUNIT ALPHA TYPE 2, PUTATIVE
C, Q
PROTEASOME SUBUNIT ALPHA TYPE
G, U
PROTEASOME COMPONENT C8, PUTATIVE
I, W
PROTEASOME SUBUNIT BETA TYPE

InterPro: Protein Family Classification InterPro Database Homepage

ChainsAccessionNameType
D, R
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
D, R
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
D, R
IPR023332Proteasome alpha-type subunitFamily
D, R
IPR001353Proteasome, subunit alpha/betaFamily
E, S
IPR033812Proteasome subunit alpha5Family
E, S
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
E, S
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
E, S
IPR023332Proteasome alpha-type subunitFamily
E, S
IPR001353Proteasome, subunit alpha/betaFamily
F, T
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
F, T
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
F, T
IPR035144Proteasome subunit alpha 1Family
F, T
IPR023332Proteasome alpha-type subunitFamily
F, T
IPR001353Proteasome, subunit alpha/betaFamily
H, V
IPR023333Proteasome B-type subunitFamily
H, V
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
H, V
IPR001353Proteasome, subunit alpha/betaFamily
J, X
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
J, X
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
J, X
IPR023333Proteasome B-type subunitFamily
J, X
IPR001353Proteasome, subunit alpha/betaFamily
J, X
IPR033811Proteasome beta 3 subunitFamily
K, Y
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
K, Y
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
K, Y
IPR001353Proteasome, subunit alpha/betaFamily
K, Y
IPR035206Proteasome subunit beta 2Family
A, O
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
A, O
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
A, O
IPR023332Proteasome alpha-type subunitFamily
A, O
IPR001353Proteasome, subunit alpha/betaFamily
A, O
IPR034642Proteasome subunit alpha6Family
L, Z
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
L, Z
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
L, Z
IPR023333Proteasome B-type subunitFamily
L, Z
IPR001353Proteasome, subunit alpha/betaFamily
L, Z
IPR000243Peptidase T1A, proteasome beta-subunitFamily
BA [auth b],
N
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
BA [auth b],
N
IPR023333Proteasome B-type subunitFamily
BA [auth b],
N
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
BA [auth b],
N
IPR016295Proteasome subunit beta 4Family
BA [auth b],
N
IPR001353Proteasome, subunit alpha/betaFamily
B, P
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
B, P
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
B, P
IPR023332Proteasome alpha-type subunitFamily
B, P
IPR001353Proteasome, subunit alpha/betaFamily
C, Q
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
C, Q
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
C, Q
IPR023332Proteasome alpha-type subunitFamily
C, Q
IPR001353Proteasome, subunit alpha/betaFamily
G, U
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
G, U
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
G, U
IPR001353Proteasome, subunit alpha/betaFamily
I, W
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
I, W
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
I, W
IPR023333Proteasome B-type subunitFamily
I, W
IPR001353Proteasome, subunit alpha/betaFamily
I, W
IPR000243Peptidase T1A, proteasome beta-subunitFamily