4OBC

Crystal structure of HCV polymerase NS5b genotype 2a JFH-1 isolate with the S15G, C223H, V321I resistance mutations against the guanosine analog GS-0938 (PSI-3529238)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.188 
  • R-Value Observed: 0.190 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Molecular and Structural Basis for the Roles of Hepatitis C Virus Polymerase NS5B Amino Acids 15, 223, and 321 in Viral Replication and Drug Resistance.

Lam, A.M.Edwards, T.E.Mosley, R.T.Murakami, E.Bansal, S.Lugo, C.Bao, H.Otto, M.J.Sofia, M.J.Furman, P.A.

(2014) Antimicrob Agents Chemother 58: 6861-6869

  • DOI: https://doi.org/10.1128/AAC.03847-14
  • Primary Citation of Related Structures:  
    4OBC

  • PubMed Abstract: 

    Resistance to the 2'-F-2'-C-methylguanosine monophosphate nucleotide hepatitis C virus (HCV) inhibitors PSI-352938 and PSI-353661 was associated with a combination of amino acid changes (changes of S to G at position 15 [S15G], C223H, and V321I) within the genotype 2a nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase. To understand the role of these residues in viral replication, we examined the effects of single and multiple point mutations on replication fitness and inhibition by a series of nucleotide analog inhibitors. An acidic residue at position 15 reduced replicon fitness, consistent with its proximity to the RNA template. A change of the residue at position 223 to an acidic or large residue reduced replicon fitness, consistent with its proposed proximity to the incoming nucleoside triphosphate (NTP). A change of the residue at position 321 to a charged residue was not tolerated, consistent with its position within a hydrophobic cavity. This triple resistance mutation was specific to both genotype 2a virus and 2'-F-2'-C-methylguanosine inhibitors. A crystal structure of the NS5B S15G/C223H/V321I mutant of the JFH-1 isolate exhibited rearrangement to a conformation potentially consistent with short primer-template RNA binding, which could suggest a mechanism of resistance accomplished through a change in the NS5B conformation, which was better tolerated by genotype 2a virus than by viruses of other genotypes.


  • Organizational Affiliation

    Pharmasset, Inc., Princeton, New Jersey, USA alam@noviratherapeutics.com tedwards@be4.com.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
RNA-directed RNA polymerase580Hepatitis C virus JFH-1Mutation(s): 5 
Gene Names: POLG_HCVJF
EC: 2.7.7.48
UniProt
Find proteins for Q99IB8 (Hepatitis C virus genotype 2a (isolate JFH-1))
Explore Q99IB8 
Go to UniProtKB:  Q99IB8
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ99IB8
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.188 
  • R-Value Observed: 0.190 
  • Space Group: P 65
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 140.208α = 90
b = 140.208β = 90
c = 92.567γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
PHASERphasing
REFMACrefinement
PDB_EXTRACTdata extraction
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-09-10
    Type: Initial release
  • Version 1.1: 2014-10-29
    Changes: Database references
  • Version 1.2: 2017-11-22
    Changes: Refinement description
  • Version 1.3: 2023-09-20
    Changes: Data collection, Database references, Derived calculations, Refinement description