7EHF

Crystal structure of the aminoglycoside resistance methyltransferase NpmB1

  • Classification: TRANSFERASE
  • Organism(s): Escherichia coli
  • Expression System: Escherichia coli
  • Mutation(s): No 

  • Deposited: 2021-03-29 Released: 2021-08-11 
  • Deposition Author(s): Kawai, A., Doi, Y.
  • Funding Organization(s): National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)

Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.194 
  • R-Value Work: 0.166 
  • R-Value Observed: 0.167 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Functional and Structural Characterization of Acquired 16S rRNA Methyltransferase NpmB1 Conferring Pan-Aminoglycoside Resistance.

Kawai, A.Suzuki, M.Tsukamoto, K.Minato, Y.Doi, Y.

(2021) Antimicrob Agents Chemother 65: e0100921-e0100921

  • DOI: https://doi.org/10.1128/AAC.01009-21
  • Primary Citation of Related Structures:  
    7EHF

  • PubMed Abstract: 

    Posttranslational methylation of the A site of 16S rRNA at position A1408 leads to pan-aminoglycoside resistance encompassing both 4,5- and 4,6-disubstituted 2-deoxystreptamine (DOS) aminoglycosides. To date, NpmA is the only acquired enzyme with such a function. Here, we present the function and structure of NpmB1, whose sequence was identified in Escherichia coli genomes registered from the United Kingdom. NpmB1 possesses 40% amino acid identity with NpmA1 and confers resistance to all clinically relevant aminoglycosides, including 4,5-DOS agents. Phylogenetic analysis of NpmB1 and NpmB2, its single-amino-acid variant, revealed that the encoding gene was likely acquired by E. coli from a soil bacterium. The structure of NpmB1 suggests that it requires a structural change of the β6/7 linker in order to bind to 16S rRNA. These findings establish NpmB1 and NpmB2 as the second group of acquired pan-aminoglycoside resistance 16S rRNA methyltransferases.


  • Organizational Affiliation

    Department of Microbiology, Fujita Health Universitygrid.256115.4 School of Medicine, Aichi, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
16S rRNA methyltransferase217Escherichia coliMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
EDO
Query on EDO

Download Ideal Coordinates CCD File 
D [auth A]
E [auth A]
F [auth A]
G [auth A]
H [auth A]
D [auth A],
E [auth A],
F [auth A],
G [auth A],
H [auth A],
I [auth A],
J [auth A]
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
CL
Query on CL

Download Ideal Coordinates CCD File 
C [auth A]CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
NA
Query on NA

Download Ideal Coordinates CCD File 
B [auth A]SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.194 
  • R-Value Work: 0.166 
  • R-Value Observed: 0.167 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 42.738α = 90
b = 65.798β = 90
c = 65.806γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XDSdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)United StatesR21AI151362

Revision History  (Full details and data files)

  • Version 1.0: 2021-08-11
    Type: Initial release
  • Version 1.1: 2022-02-16
    Changes: Database references
  • Version 1.2: 2022-03-16
    Changes: Database references
  • Version 1.3: 2023-11-29
    Changes: Data collection, Refinement description