7CP6

Crystal structure of FqzB


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.238 
  • R-Value Work: 0.213 
  • R-Value Observed: 0.214 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.1 of the entry. See complete history


Literature

Structural and Functional Analyses of a Spiro-Carbon-Forming, Highly Promiscuous Epoxidase from Fungal Natural Product Biosynthesis.

Matsushita, T.Kishimoto, S.Hara, K.Hashimoto, H.Watanabe, K.

(2020) Biochemistry 59: 4787-4792

  • DOI: https://doi.org/10.1021/acs.biochem.0c00896
  • Primary Citation of Related Structures:  
    7CP6, 7CP7

  • PubMed Abstract: 

    Biosynthesis of fungal nonribosomal peptides frequently involves redox enzymes such as flavin-containing monooxygenase (FMO) to introduce complexity into the core chemical structure. One such example is the formation of spiro-carbons catalyzed by various oxidases. Because many chemically complex spiro-carbon-bearing natural products exhibit useful biological activities, understanding the mechanism of spiro-carbon biosynthesis is of great interest. We previously identified FqzB, an FMO from the fumiquinazoline biosynthetic pathway responsible for epoxidation of fumiquinazoline F that crosstalks with the fumitremorgin biosynthetic pathway to form spirotryprostatin A via epoxidation of the precursor fumitremorgin C. What makes FqzB more interesting is its relaxed substrate specificity, where it can accept a range of other substrates, including tryprostatins A and B along with its original substrate fumiquinazoline F. Here, we characterized FqzB crystallographically and examined FqzB and its site-specific mutants kinetically to understand how this promiscuous epoxidase works. Furthermore, the mutagenesis studies as well as computational docking experiments between the FqzB crystal structure and its known substrates spirotryprostatin A and B, as well as fumitremorgin C and fumiquinazoline F, provided insight into potential modes of substrate recognition and the source of broad substrate tolerance exhibited by this epoxidase. This study serves as a foundation for further characterization and engineering of this redox enzyme, which has potential utility as a valuable catalyst with broad substrate tolerance and an ability to introduce chemical complexity into carbon frameworks for chemoenzymatic and biosynthetic applications.


  • Organizational Affiliation

    Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
MAK1-like monooxygenase
A, B
459Aspergillus fumigatus Z5Mutation(s): 2 
Gene Names: Y699_04337
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FAD (Subject of Investigation/LOI)
Query on FAD

Download Ideal Coordinates CCD File 
C [auth A],
H [auth B]
FLAVIN-ADENINE DINUCLEOTIDE
C27 H33 N9 O15 P2
VWWQXMAJTJZDQX-UYBVJOGSSA-N
HG
Query on HG

Download Ideal Coordinates CCD File 
G [auth A]MERCURY (II) ION
Hg
BQPIGGFYSBELGY-UHFFFAOYSA-N
IOD
Query on IOD

Download Ideal Coordinates CCD File 
D [auth A]
E [auth A]
F [auth A]
I [auth B]
J [auth B]
D [auth A],
E [auth A],
F [auth A],
I [auth B],
J [auth B],
K [auth B],
L [auth B],
M [auth B],
N [auth B]
IODIDE ION
I
XMBWDFGMSWQBCA-UHFFFAOYSA-M
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.238 
  • R-Value Work: 0.213 
  • R-Value Observed: 0.214 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 55.893α = 90
b = 120.181β = 94.111
c = 68.048γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
Aimlessdata scaling
PHENIXphasing
Cootmodel building

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2020-12-30
    Type: Initial release
  • Version 1.1: 2021-01-13
    Changes: Database references