5X3F

Crystal structure of the YgjG-Protein A-Zpa963-PKA catalytic domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.38 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.192 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Construction of novel repeat proteins with rigid and predictable structures using a shared helix method.

Youn, S.J.Kwon, N.Y.Lee, J.H.Kim, J.H.Choi, J.Lee, H.Lee, J.O.

(2017) Sci Rep 7: 2595-2595

  • DOI: https://doi.org/10.1038/s41598-017-02803-z
  • Primary Citation of Related Structures:  
    5H75, 5H76, 5H77, 5H78, 5H79, 5H7A, 5H7B, 5H7C, 5H7D, 5X3F, 5XBY

  • PubMed Abstract: 

    Generating artificial protein assemblies with complex shapes requires a method for connecting protein components with stable and predictable structures. Currently available methods for creating rigid protein assemblies rely on either complicated calculations or extensive trial and error. We describe a simple and efficient method for connecting two proteins via a fused alpha helix that is formed by joining two preexisting helices into a single extended helix. Because the end-to-end ligation of helices does not guarantee the formation of a continuous helix, we superimposed 1-2 turns of pairs of connecting helices by using a molecular graphics program. Then, we chose amino acids from the two natural sequences that would stabilize the connecting helix. This "shared helix method" is highly efficient. All the designed proteins that could be produced in Escherichia coli were readily crystallized and had the expected fusion structures. To prove the usefulness of this method, we produced two novel repeat proteins by assembling several copies of natural or artificial proteins with alpha helices at both termini. Their crystal structures demonstrated the successful assembly of the repeating units with the intended curved shapes. We propose that this method could dramatically expand the available repertoire of natural repeat proteins.


  • Organizational Affiliation

    Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Putrescine aminotransferase,Immunoglobulin G-binding protein A501Escherichia coli K-12Staphylococcus aureus
This entity is chimeric
Mutation(s): 2 
Gene Names: patAygjGb3073JW5510spa
EC: 2.6.1.82
UniProt
Find proteins for P38507 (Staphylococcus aureus)
Explore P38507 
Go to UniProtKB:  P38507
Find proteins for P42588 (Escherichia coli (strain K12))
Explore P42588 
Go to UniProtKB:  P42588
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupsP38507P42588
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Zpa963,cAMP-dependent protein kinase catalytic subunit alpha393Staphylococcus aureusMus musculus
This entity is chimeric
Mutation(s): 0 
EC: 2.7.11.11
UniProt
Find proteins for P05132 (Mus musculus)
Explore P05132 
Go to UniProtKB:  P05132
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP05132
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
TPO
Query on TPO
B
L-PEPTIDE LINKINGC4 H10 N O6 PTHR
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.38 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.192 
  • Space Group: I 2 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 140.518α = 90
b = 153.496β = 90
c = 205.714γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data reduction
SCALEPACKdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2017-06-28
    Type: Initial release
  • Version 1.1: 2023-11-22
    Changes: Data collection, Database references, Refinement description