5GLJ

Crystal Structure of PDZ1 Domain of Human Protein Tyrosine Phosphatase PTP-Bas


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.206 
  • R-Value Work: 0.170 
  • R-Value Observed: 0.172 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

High-resolution crystal structure of the PDZ1 domain of human protein tyrosine phosphatase PTP-Bas.

Lee, S.O.Lee, M.K.Ku, B.Bae, K.H.Lee, S.C.Lim, H.M.Kim, S.J.Chi, S.W.

(2016) Biochem Biophys Res Commun 478: 1205-1210

  • DOI: https://doi.org/10.1016/j.bbrc.2016.08.095
  • Primary Citation of Related Structures:  
    5GLJ

  • PubMed Abstract: 

    Protein tyrosine phosphatase-Basophil (PTP-Bas) is a membrane-associated protein tyrosine phosphatase with five PDZ domains and is involved in apoptosis, tumorigenesis, and insulin signaling. The interaction between PTP-Bas and tandem-PH-domain-containing protein 1/2 (TAPP1/2) plays an essential role in the regulation of insulin signaling. Despite its high sequence homology with the other PDZ domains, only the PDZ1 domain of PTP-Bas showed distinct binding specificity for TAPP1/2. Although the interaction between PTP-Bas PDZ1 and TAPP1/2 is a therapeutic target for diabetes, the structural basis for the interaction has not been elucidated. In the present study, we determined the crystal structure of the PTP-Bas PDZ1 domain at 1.6 Å resolution. In addition, we calculated the structural models of complexes of PTP-Bas PDZ1 and the C-terminal peptides of TAPP1/2 (referred to as TAPP1p/2p). Structural comparison with the PTP-Bas PDZ2/RA-GEF2 peptide complex revealed a structural basis for distinct binding specificity of PTP-Bas PDZ1 for TAPP1p/2p peptides. Our high-resolution crystal structure of PTP-Bas PDZ1 will serve as a useful template for rational structure-based design of novel anti-diabetes therapeutics.


  • Organizational Affiliation

    Disease Target Structure Research Center, KRIBB, Daejeon 34141, Republic of Korea; Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Tyrosine-protein phosphatase non-receptor type 13
A, B, C, D
96Homo sapiensMutation(s): 0 
Gene Names: PTPN13PNP1PTP1EPTPL1
EC: 3.1.3.48
UniProt & NIH Common Fund Data Resources
Find proteins for Q12923 (Homo sapiens)
Explore Q12923 
Go to UniProtKB:  Q12923
PHAROS:  Q12923
GTEx:  ENSG00000163629 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ12923
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.206 
  • R-Value Work: 0.170 
  • R-Value Observed: 0.172 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 32.034α = 90
b = 57.571β = 90
c = 168.971γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
PHENIXphasing
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2016-11-23
    Type: Initial release
  • Version 1.1: 2024-03-20
    Changes: Data collection, Database references, Derived calculations