4O1H

Crystal Structure of the regulatory domain of AmeGlnR


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.269 
  • R-Value Work: 0.221 
  • R-Value Observed: 0.223 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Atypical OmpR/PhoB Subfamily Response Regulator GlnR of Actinomycetes Functions as a Homodimer, Stabilized by the Unphosphorylated Conserved Asp-focused Charge Interactions

Lin, W.Wang, Y.Han, X.Zhang, Z.Wang, C.Wang, J.Yang, H.Lu, Y.Jiang, W.Zhao, G.P.Zhang, P.

(2014) J Biol Chem 289: 15413-15425

  • DOI: https://doi.org/10.1074/jbc.M113.543504
  • Primary Citation of Related Structures:  
    4O1H, 4O1I

  • PubMed Abstract: 

    The OmpR/PhoB subfamily protein GlnR of actinomycetes is an orphan response regulator that globally coordinates the expression of genes related to nitrogen metabolism. Biochemical and genetic analyses reveal that the functional GlnR from Amycolatopsis mediterranei is unphosphorylated at the potential phosphorylation Asp(50) residue in the N-terminal receiver domain. The crystal structure of this receiver domain demonstrates that it forms a homodimer through the α4-β5-α5 dimer interface highly similar to the phosphorylated typical response regulator, whereas the so-called "phosphorylation pocket" is not conserved, with its space being occupied by an Arg(52) from the β3-α3 loop. Both in vitro and in vivo experiments confirm that GlnR forms a functional homodimer via its receiver domain and suggest that the charge interactions of Asp(50) with the highly conserved Arg(52) and Thr(9) in the receiver domain may be crucial in maintaining the proper conformation for homodimerization, as also supported by molecular dynamics simulations of the wild type GlnR versus the deficient mutant GlnR(D50A). This model is backed by the distinct phenotypes of the total deficient GlnR(R52A/T9A) double mutant versus the single mutants of GlnR (i.e. D50N, D50E, R52A and T9A), which have only minor effects upon both dimerization and physiological function of GlnR in vivo, albeit their DNA binding ability is weakened compared with that of the wild type. By integrating the supportive data of GlnRs from the model Streptomyces coelicolor and the pathogenic Mycobacterium tuberculosis, we conclude that the actinomycete GlnR is atypical with respect to its unphosphorylated conserved Asp residue being involved in the critical Arg/Asp/Thr charge interactions, which is essential for maintaining the biologically active homodimer conformation.


  • Organizational Affiliation

    From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Transcription regulator GlnR
A, B, C, D
139Amycolatopsis mediterraneiMutation(s): 3 
Gene Names: GlnR
UniProt
Find proteins for Q8GD11 (Amycolatopsis mediterranei)
Explore Q8GD11 
Go to UniProtKB:  Q8GD11
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8GD11
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MSE
Query on MSE
A, B, C, D
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.269 
  • R-Value Work: 0.221 
  • R-Value Observed: 0.223 
  • Space Group: P 65 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 93.129α = 90
b = 93.129β = 90
c = 308.415γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
REFMACrefinement
PDB_EXTRACTdata extraction
HKL-2000data collection
HKL-2000data reduction
SOLVEphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-04-23
    Type: Initial release
  • Version 1.1: 2014-06-18
    Changes: Database references
  • Version 1.2: 2017-11-22
    Changes: Refinement description