4ZIH

Crystal Structure of core/latch dimer of Bax in complex with BimBH3mini


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.189 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal structure of Bax bound to the BH3 peptide of Bim identifies important contacts for interaction.

Robin, A.Y.Krishna Kumar, K.Westphal, D.Wardak, A.Z.Thompson, G.V.Dewson, G.Colman, P.M.Czabotar, P.E.

(2015) Cell Death Dis 6: e1809-e1809

  • DOI: https://doi.org/10.1038/cddis.2015.141
  • Primary Citation of Related Structures:  
    4ZIE, 4ZIF, 4ZIG, 4ZIH, 4ZII

  • PubMed Abstract: 

    The BH3-only protein Bim is a potent direct activator of the proapoptotic effector protein Bax, but the structural basis for its activity has remained poorly defined. Here we describe the crystal structure of the BimBH3 peptide bound to BaxΔC26 and structure-based mutagenesis studies. Similar to BidBH3, the BimBH3 peptide binds into the cognate surface groove of Bax using the conserved hydrophobic BH3 residues h1-h4. However, the structure and mutagenesis data show that Bim is less reliant compared with Bid on its 'h0' residues for activating Bax and that a single amino-acid difference between Bim and Bid encodes a fivefold difference in Bax-binding potency. Similar to the structures of BidBH3 and BaxBH3 bound to BaxΔC21, the structure of the BimBH3 complex with BaxΔC displays a cavity surrounded by Bax α1, α2, α5 and α8. Our results are consistent with a model in which binding of an activator BH3 domain to the Bax groove initiates separation of its core (α2-α5) and latch (α6-α8) domains, enabling its subsequent dimerisation and the permeabilisation of the mitochondrial outer membrane.


  • Organizational Affiliation

    1] The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia [2] Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Apoptosis regulator BAX167Homo sapiensMutation(s): 2 
Gene Names: BAXBCL2L4
UniProt & NIH Common Fund Data Resources
Find proteins for Q07812 (Homo sapiens)
Explore Q07812 
Go to UniProtKB:  Q07812
PHAROS:  Q07812
GTEx:  ENSG00000087088 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ07812
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Bcl-2-like protein 1120Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for O43521 (Homo sapiens)
Explore O43521 
Go to UniProtKB:  O43521
PHAROS:  O43521
GTEx:  ENSG00000153094 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO43521
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.186 
  • R-Value Observed: 0.189 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 95.73α = 90
b = 95.73β = 90
c = 37.1γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
XSCALEdata scaling
PHASERphasing
PDB_EXTRACTdata extraction
XDSdata reduction

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Health and Medical Research Council (NHMRC, Australia)AustraliaProjects Grant 1079706
National Health and Medical Research Council (NHMRC, Australia)AustraliaProjects Grant 1059331
National Health and Medical Research Council (NHMRC, Australia)AustraliaProjects Grant 1023055
National Health and Medical Research Council (NHMRC, Australia)AustraliaProgram Grant 1016701

Revision History  (Full details and data files)

  • Version 1.0: 2015-07-22
    Type: Initial release
  • Version 1.1: 2017-09-20
    Changes: Author supporting evidence, Data collection, Derived calculations, Source and taxonomy
  • Version 1.2: 2020-01-08
    Changes: Author supporting evidence
  • Version 1.3: 2023-09-27
    Changes: Data collection, Database references, Refinement description