3QN6

Crystal Structures of Escherichia coli Aspartate Aminotransferase Reconstituted with 1-Deaza-Pyridoxal 5'-Phosphate: Internal Aldimine and Stable L-Aspartate External Aldimine


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.79 Å
  • R-Value Free: 0.188 
  • R-Value Work: 0.151 
  • R-Value Observed: 0.153 

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

Crystal Structures of Aspartate Aminotransferase Reconstituted with 1-Deazapyridoxal 5'-Phosphate: Internal Aldimine and Stable l-Aspartate External Aldimine.

Griswold, W.R.Fisher, A.J.Toney, M.D.

(2011) Biochemistry 50: 5918-5924

  • DOI: https://doi.org/10.1021/bi200436y
  • Primary Citation of Related Structures:  
    3QN6, 3QPG

  • PubMed Abstract: 

    The 1.8 Å resolution crystal structures of Escherichia coli aspartate aminotransferase reconstituted with 1-deazapyridoxal 5'-phosphate (deazaPLP; 2-formyl-3-hydroxy-4-methylbenzyl phosphate) in the internal aldimine and L-aspartate external aldimine forms are reported. The L-aspartate·deazaPLP external aldimine is extraordinarily stable (half-life of >20 days), allowing crystals of this intermediate to be grown by cocrystallization with L-aspartate. This structure is compared to that of the α-methyl-L-aspartate·PLP external aldimine. Overlays with the corresponding pyridoxal 5'-phosphate (PLP) aldimines show very similar orientations of deazaPLP with respect to PLP. The lack of a hydrogen bond between Asp222 and deazaPLP, which serves to "anchor" PLP in the active site, releases strain in the deazaPLP internal aldimine that is enforced in the PLP internal aldimine [Hayashi, H., Mizuguchi, H., Miyahara, I., Islam, M. M., Ikushiro, H., Nakajima, Y., Hirotsu, K., and Kagamiyama, H. (2003) Biochim. Biophys. Acta1647, 103] as evidenced by the planarity of the pyridine ring and the Schiff base linkage with Lys258. Additionally, loss of this anchor causes a 10° greater tilt of deazaPLP toward the substrate in the external aldimine. An important mechanistic difference between the L-aspartate·deazaPLP and α-methyl-L-aspartate·PLP external aldimines is a hydrogen bond between Gly38 and Lys258 in the former, positioning the catalytic base above and approximately equidistant between Cα and C4'. In contrast, in the α-methyl-L-aspartate·PLP external aldimine, the ε-amino group of Lys258 is rotated ~70° to form a hydrogen bond to Tyr70 because of the steric bulk of the methyl group.


  • Organizational Affiliation

    Department of Chemistry, University of California, Davis, California 95616, United States.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Aspartate aminotransferase396Escherichia coliMutation(s): 0 
Gene Names: aspCb0928JW0911
EC: 2.6.1.1
UniProt
Find proteins for P00509 (Escherichia coli (strain K12))
Explore P00509 
Go to UniProtKB:  P00509
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00509
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
3QN
Query on 3QN
A
L-PEPTIDE LINKINGC15 H23 N2 O7 PLYS
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.79 Å
  • R-Value Free: 0.188 
  • R-Value Work: 0.151 
  • R-Value Observed: 0.153 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 84.749α = 90
b = 154.678β = 90
c = 79.147γ = 90
Software Package:
Software NamePurpose
MOSFLMdata reduction
SCALAdata scaling
MOLREPphasing
PHENIXrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-06-15
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2011-07-20
    Changes: Database references
  • Version 2.0: 2023-11-15
    Changes: Advisory, Atomic model, Data collection, Database references, Derived calculations