3M1H

Crystal Structure Analysis of the K3 Cleaved Adhesin Domain of Lys-gingipain (Kgp) from Porphyromonas gingivalis w83


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.56 Å
  • R-Value Free: 0.191 
  • R-Value Work: 0.158 
  • R-Value Observed: 0.159 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

The modular structure of haemagglutinin/adhesin regions in gingipains of Porphyromonas gingivalis.

Li, N.Yun, P.Jeffries, C.M.Langley, D.Gamsjaeger, R.Church, W.B.Hunter, N.Collyer, C.A.

(2011) Mol Microbiol 81: 1358-1373

  • DOI: https://doi.org/10.1111/j.1365-2958.2011.07768.x
  • Primary Citation of Related Structures:  
    3M1H

  • PubMed Abstract: 

    High-molecular-weight arginine- and lysine-specific (Kgp) gingipains are essential virulence factors expressed by the oral pathogen Porphyromonas gingivalis. Haemagglutinin/adhesin (HA) regions of these proteases have been implicated in targeting catalytic domains to biological substrates and in other adhesive functions. We now report the crystal structure of the K3 adhesin domain/module of Kgp, which folds into the distinct β-jelly roll sandwich topology previously observed for K2. A conserved structural feature of K3, previously observed in the Kgp K2 module, is the half-way point anchoring of the surface exposed loops via an arginine residue found in otherwise highly variable sequences. Small-angle X-ray scattering data for the recombinant construct K1K2K3 confirmed a structure comprising a tandem repeat of three homologous modules, K1, K2 and K3 while also indicating an unusual 'y'-shape arrangement of the modules connected by variable linker sequences. Only the K2 and K3 modules and a K1K2 construct were observed to be potently haemolytic. K2, K3 and the K1K2 construct showed preferential recognition of haem-albumin over albumin whereas only low affinity binding was detected for K1 and the K1K2K3 construct. The data indicate replication of some biological functions over the three adhesin domains of Kgp while other functions are restricted.


  • Organizational Affiliation

    School of Molecular Bioscience, The University of Sydney, NSW, Australia.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Lysine specific cysteine protease
A, B, C, D
178Porphyromonas gingivalis W83Mutation(s): 0 
Gene Names: kgp
UniProt
Find proteins for Q51817 (Porphyromonas gingivalis)
Explore Q51817 
Go to UniProtKB:  Q51817
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ51817
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download Ideal Coordinates CCD File 
E [auth A]
F [auth A]
J [auth B]
K [auth B]
O [auth C]
E [auth A],
F [auth A],
J [auth B],
K [auth B],
O [auth C],
P [auth C],
S [auth D],
T [auth D]
CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
NA
Query on NA

Download Ideal Coordinates CCD File 
G [auth A]
H [auth A]
I [auth A]
L [auth B]
M [auth B]
G [auth A],
H [auth A],
I [auth A],
L [auth B],
M [auth B],
N [auth B],
Q [auth C],
R [auth C],
U [auth D]
SODIUM ION
Na
FKNQFGJONOIPTF-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.56 Å
  • R-Value Free: 0.191 
  • R-Value Work: 0.158 
  • R-Value Observed: 0.159 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.251α = 90
b = 123.131β = 91.25
c = 62.614γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
PHASERphasing
REFMACrefinement
PDB_EXTRACTdata extraction
Blu-Icedata collection
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-03-23
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2013-09-18
    Changes: Database references
  • Version 1.3: 2017-11-08
    Changes: Refinement description
  • Version 1.4: 2023-11-01
    Changes: Data collection, Database references, Derived calculations, Refinement description