3HLI

diisopropyl fluorophosphatase (DFPase), active site mutants


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.205 
  • R-Value Observed: 0.205 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design

Melzer, M.Chen, J.C.Heidenreich, A.Gab, J.Koller, M.Kehe, K.Blum, M.M.

(2009) J Am Chem Soc 131: 17226-17232

  • DOI: https://doi.org/10.1021/ja905444g
  • Primary Citation of Related Structures:  
    3HLH, 3HLI

  • PubMed Abstract: 

    Diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris is an efficient and robust biocatalyst for the hydrolysis of a range of highly toxic organophosphorus compounds including the nerve agents sarin, soman, and cyclosarin. In contrast to the substrate diisopropyl fluorophosphate (DFP) the nerve agents possess an asymmetric phosphorus atom, which leads to pairs of enantiomers that display markedly different toxicities. Wild-type DFPase prefers the less toxic stereoisomers of the substrates which leads to slower detoxification despite rapid hydrolysis. Enzyme engineering efforts based on rational design yielded two quadruple enzyme mutants with reversed enantioselectivity and overall enhanced activity against tested nerve agents. The reversed stereochemical preference is explained through modeling studies and the crystal structures of the two mutants. Using the engineered mutants in combination with wild-type DFPase leads to significantly enhanced activity and detoxification, which is especially important for personal decontamination. Our findings may also be of relevance for the structurally related enzyme human paraoxonase (PON), which is of considerable interest as a potential catalytic in vivo scavenger in case of organophosphorus poisoning.


  • Organizational Affiliation

    Blum-Scientific Services, Ledererstrasse 23, 80331 Munich, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Diisopropyl-fluorophosphatase
A, B, C, D
314Loligo vulgarisMutation(s): 4 
EC: 3.1.8.2
UniProt
Find proteins for Q7SIG4 (Loligo vulgaris)
Explore Q7SIG4 
Go to UniProtKB:  Q7SIG4
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ7SIG4
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.205 
  • R-Value Observed: 0.205 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.95α = 90
b = 74.49β = 100
c = 118.95γ = 90
Software Package:
Software NamePurpose
ADSCdata collection
MOLREPphasing
CNSrefinement
HKL-2000data reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-11-10
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2021-11-10
    Changes: Database references, Derived calculations
  • Version 1.3: 2023-11-01
    Changes: Data collection, Refinement description