3D89

Crystal Structure of a Soluble Rieske Ferredoxin from Mus musculus


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.07 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.200 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

X-ray structure of a soluble Rieske-type ferredoxin from Mus musculus.

Levin, E.J.Elsen, N.L.Seder, K.D.McCoy, J.G.Fox, B.G.Phillips, G.N.

(2008) Acta Crystallogr D Biol Crystallogr 64: 933-940

  • DOI: https://doi.org/10.1107/S0907444908021653
  • Primary Citation of Related Structures:  
    3D89

  • PubMed Abstract: 

    The 2.07 A resolution X-ray crystal structure of a soluble Rieske-type ferredoxin from Mus musculus encoded by the gene Mm.266515 is reported. Although they are present as covalent domains in eukaryotic membrane oxidase complexes, soluble Rieske-type ferredoxins have not previously been observed in eukaryotes. The overall structure of the mouse Rieske-type ferredoxin is typical of this class of iron-sulfur proteins and consists of a larger partial beta-barrel domain and a smaller domain containing Cys57, His59, Cys80 and His83 that binds the [2Fe-2S] cluster. The S atoms of the cluster are hydrogen-bonded by six backbone amide N atoms in a pattern typical of membrane-bound high-potential eukaryotic respiratory Rieske ferredoxins. However, phylogenetic analysis suggested that the mouse Rieske-type ferredoxin was more closely related to bacterial Rieske-type ferredoxins. Correspondingly, the structure revealed an extended loop most similar to that seen in Rieske-type ferredoxin subunits of bacterial aromatic dioxygenases, including the positioning of an aromatic side chain (Tyr85) between this loop and the [2Fe-2S] cluster. The mouse Rieske-type ferredoxin was shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases, although it was unable to serve as an electron donor for a bacterial monooxygenase complex. The human homolog of mouse Rieske-type ferredoxin was also cloned and purified. It behaved identically to mouse Rieske-type ferredoxin in all biochemical characterizations but did not crystallize. Based on its high sequence identity, the structure of the human homolog is likely to be modeled well by the mouse Rieske-type ferredoxin structure.


  • Organizational Affiliation

    Department of Biochemistry, University of Wisconsin, Madison, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Rieske domain-containing protein157Mus musculusMutation(s): 0 
Gene Names: Rfesd
UniProt
Find proteins for Q8K2P6 (Mus musculus)
Explore Q8K2P6 
Go to UniProtKB:  Q8K2P6
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8K2P6
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FES
Query on FES

Download Ideal Coordinates CCD File 
B [auth A]FE2/S2 (INORGANIC) CLUSTER
Fe2 S2
NIXDOXVAJZFRNF-UHFFFAOYSA-N
EDO
Query on EDO

Download Ideal Coordinates CCD File 
C [auth A]1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.07 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.200 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 52.413α = 90
b = 52.413β = 90
c = 108.808γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
SHARPphasing
DMphasing
REFMACrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2008-07-15
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Advisory, Version format compliance
  • Version 1.2: 2017-10-25
    Changes: Author supporting evidence, Refinement description
  • Version 1.3: 2024-02-21
    Changes: Data collection, Database references, Derived calculations