3D7M

Crystal Structure of the G Protein Fast-Exchange Double Mutant I56C/Q333C


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.294 
  • R-Value Work: 0.249 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Helix dipole movement and conformational variability contribute to allosteric GDP release in Galphai subunits.

Preininger, A.M.Funk, M.A.Oldham, W.M.Meier, S.M.Johnston, C.A.Adhikary, S.Kimple, A.J.Siderovski, D.P.Hamm, H.E.Iverson, T.M.

(2009) Biochemistry 48: 2630-2642

  • DOI: https://doi.org/10.1021/bi801853a
  • Primary Citation of Related Structures:  
    3D7M

  • PubMed Abstract: 

    Heterotrimeric G proteins (Galphabetagamma) transmit signals from activated G protein-coupled receptors (GPCRs) to downstream effectors through a guanine nucleotide signaling cycle. Numerous studies indicate that the carboxy-terminal alpha5 helix of Galpha subunits participates in Galpha-receptor binding, and previous EPR studies suggest this receptor-mediated interaction induces a rotation and translation of the alpha5 helix of the Galpha subunit [Oldham, W. M., et al. (2006) Nat. Struct. Mol. Biol. 13, 772-777]. On the basis of this result, an engineered disulfide bond was designed to constrain the alpha5 helix of Galpha(i1) into its EPR-measured receptor-associated conformation through the introduction of cysteines at position 56 in the alpha1 helix and position 333 in the alpha5 helix (I56C/Q333C Galpha(i1)). A functional mimetic of the EPR-measured alpha5 helix dipole movement upon receptor association was additionally created by introduction of a positive charge at the amino terminus of this helix, D328R Galpha(i1). Both proteins exhibit a dramatically elevated level of basal nucleotide exchange. The 2.9 A resolution crystal structure of I56C/Q333C Galpha(i1) in complex with GDP-AlF(4)(-) reveals the shift of the alpha5 helix toward the guanine nucleotide binding site that is anticipated by EPR measurements. The structure of the I56C/Q333C Galpha(i1) subunit further revealed altered positions for the switch regions and throughout the Galpha(i1) subunit, accompanied by significantly elevated crystallographic temperature factors. Combined with previous evidence in the literature, the structural analysis supports the critical role of electrostatics of the alpha5 helix dipole and overall conformational variability during nucleotide release.


  • Organizational Affiliation

    Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Guanine nucleotide-binding protein G(i), alpha-1 subunit354Rattus norvegicusMutation(s): 2 
Gene Names: Gnai1Gnai-1
UniProt
Find proteins for P10824 (Rattus norvegicus)
Explore P10824 
Go to UniProtKB:  P10824
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP10824
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
GDP PDBBind:  3D7M Kd: 360 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.90 Å
  • R-Value Free: 0.294 
  • R-Value Work: 0.249 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 79.659α = 90
b = 79.659β = 90
c = 114.587γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
PHASERphasing
CNSrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-03-03
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2017-10-25
    Changes: Refinement description
  • Version 1.3: 2021-10-20
    Changes: Database references, Derived calculations
  • Version 1.4: 2023-08-30
    Changes: Data collection, Refinement description