3BQE

Structure of the central domain (MsrA) of Neisseria meningitidis PilB (reduced form)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.203 
  • R-Value Work: 0.175 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

A structural analysis of the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis

Ranaivoson, F.M.Antoine, M.Kauffmann, B.Boschi-Muller, S.Aubry, A.Branlant, G.Favier, F.

(2008) J Mol Biol 377: 268-280

  • DOI: https://doi.org/10.1016/j.jmb.2008.01.021
  • Primary Citation of Related Structures:  
    3BQE, 3BQF, 3BQG, 3BQH

  • PubMed Abstract: 

    The methionine sulfoxide reductases (Msrs) are thioredoxin-dependent oxidoreductases that catalyse the reduction of the sulfoxide function of the oxidized methionine residues. These enzymes have been shown to regulate the life span of a wide range of microbial and animal species and to play the role of physiological virulence determinant of some bacterial pathogens. Two structurally unrelated classes of Msrs exist, MsrA and MsrB, with opposite stereoselectivity towards the R and S isomers of the sulfoxide function, respectively. Both Msrs share a similar three-step chemical mechanism including (1) the formation of a sulfenic acid intermediate on the catalytic Cys with the concomitant release of the product-methionine, (2) the formation of an intramonomeric disulfide bridge between the catalytic and the regenerating Cys and (3) the reduction of the disulfide bridge by thioredoxin or its homologues. In this study, four structures of the MsrA domain of the PilB protein from Neisseria meningitidis, representative of four catalytic intermediates of the MsrA catalytic cycle, were determined by X-ray crystallography: the free reduced form, the Michaelis-like complex, the sulfenic acid intermediate and the disulfide oxidized forms. They reveal a conserved overall structure up to the formation of the sulfenic acid intermediate, while a large conformational switch is observed in the oxidized form. The results are discussed in relation to those proposed from enzymatic, NMR and theoretical chemistry studies. In particular, the substrate specificity and binding, the catalytic scenario of the reductase step and the relevance and role of the large conformational change observed in the oxidized form are discussed.


  • Organizational Affiliation

    LCM3B, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Faculté des Sciences et Techniques, Nancy Université, BP 239, 54506 Vandoeuvre-les-Nancy, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Peptide methionine sulfoxide reductase msrA/msrB194Neisseria meningitidis Z2491Mutation(s): 0 
Gene Names: pilB
EC: 1.8.4.11
UniProt
Find proteins for Q9JWM8 (Neisseria meningitidis serogroup A / serotype 4A (strain DSM 15465 / Z2491))
Explore Q9JWM8 
Go to UniProtKB:  Q9JWM8
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9JWM8
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.203 
  • R-Value Work: 0.175 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.488α = 90
b = 49.183β = 90
c = 66.153γ = 90
Software Package:
Software NamePurpose
CNSrefinement
PDB_EXTRACTdata extraction
XPRESSdata collection
DENZOdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-02-19
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 1.2: 2023-11-01
    Changes: Data collection, Database references, Refinement description