3BK6

Crystal structure of a core domain of stomatin from Pyrococcus horikoshii


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.20 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.198 
  • R-Value Observed: 0.204 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal structure of a core domain of stomatin from Pyrococcus horikoshii Illustrates a novel trimeric and coiled-coil fold

Yokoyama, H.Fujii, S.Matsui, I.

(2008) J Mol Biol 376: 868-878

  • DOI: https://doi.org/10.1016/j.jmb.2007.12.024
  • Primary Citation of Related Structures:  
    3BK6

  • PubMed Abstract: 

    Stomatin is a major integral membrane protein of human erythrocytes, the absence of which is associated with a form of hemolytic anemia known as hereditary stomatocytosis. However, the function of stomatin is not fully understood. An open reading frame, PH1511, from the hyperthermophilic archaeon Pyrococcus horikoshii encodes p-stomatin, a prokaryotic stomatin. Here, we report the first crystal structure of a stomatin ortholog, the core domain of the p-stomatin PH1511p (residues 56-234 of PH1511p, designated as PhSto(CD)). PhSto(CD) forms a novel homotrimeric structure. Three alpha/beta domains form a triangle of about 50 A on each side, and three alpha-helical segments of about 60 A in length extend from the apexes of the triangle. The alpha/beta domain of PhSto(CD) is partly similar in structure to the band-7 domain of mouse flotillin-2. While the alpha/beta domain is relatively rigid, the alpha-helical segment shows conformational flexibility, adapting to the neighboring environment. One alpha-helical segment forms an anti-parallel coiled coil with another alpha-helical segment from a symmetry-related molecule. The alpha-helical segment shows a heptad repeat pattern, and mainly hydrophobic residues form a coiled-coil interface. According to chemical cross-linking experiments, PhSto(CD) would be able to assemble into an oligomeric form. The coiled-coil fold observed in the crystal probably contributes to self-association.


  • Organizational Affiliation

    School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PH stomatin
A, B, C
188Pyrococcus horikoshiiMutation(s): 0 
Gene Names: PH1511
UniProt
Find proteins for O59180 (Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3))
Explore O59180 
Go to UniProtKB:  O59180
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO59180
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.20 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.198 
  • R-Value Observed: 0.204 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 142.553α = 90
b = 137.15β = 107.61
c = 58.544γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling
SHARPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-02-19
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2024-03-13
    Changes: Data collection, Database references