3A19

Structure of (PPG)4-OOG-(PPG)4_H monoclinic, twinned crystal


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.55 Å
  • R-Value Free: 0.204 
  • R-Value Work: 0.166 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Two crystal modifications of (Pro-Pro-Gly)4-Hyp-Hyp-Gly-(Pro-Pro-Gly)4 reveal the puckering preference of Hyp(X) in the Hyp(X):Hyp(Y) and Hyp(X):Pro(Y) stacking pairs in collagen helices.

Okuyama, K.Morimoto, T.Narita, H.Kawaguchi, T.Mizuno, K.Bachinger, H.P.Wu, G.Noguchi, K.

(2010) Acta Crystallogr D Biol Crystallogr 66: 88-96

  • DOI: https://doi.org/10.1107/S0907444909046642
  • Primary Citation of Related Structures:  
    3A08, 3A19

  • PubMed Abstract: 

    Two crystal modifications of a collagen model peptide, (Pro-Pro-Gly)(4)-Hyp-Hyp-Gly-(Pro-Pro-Gly)(4) [where Hyp is (4R,2S)-L-hydroxyproline], showed very similar unit-cell parameters and belonged to the same space group P2(1). Both crystals exhibited pseudo-merohedral twinning. The main difference was in their molecular-packing arrangements. One modification showed pseudo-hexagonal packing, while the other showed pseudo-tetragonal packing. Despite their different packing arrangements, no significant differences were observed in the hydration states of these modifications. The peptide in the pseudo-tetragonal crystal showed a cyclic fluctuation of helical twists with a period of 20 A, while that in the pseudo-hexagonal crystal did not. In these modifications, the puckering conformations of four of the 12 Hyp residues at the X position of the Hyp(X)-Hyp(Y)-Gly sequence were in the opposite conformations to the previous hypothesis that Hyp(X) residues involved in Hyp(X):Hyp(Y) and Hyp(X):Pro(Y) stacking pairs prefer up-puckering and down-puckering conformations, respectively. Detailed investigation of the molecular interactions between Hyp(X) and adjacent molecules revealed that these opposite conformations appeared because the puckering conformation, which follows the hypothesis, is subject to steric hindrance from the adjacent molecule.


  • Organizational Affiliation

    Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. okuyamak@chem.sci.osaka-u.ac.jp


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
collagen-like peptide
A, B, C, D, E
A, B, C, D, E, F
27N/AMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
HYP
Query on HYP
A, B, C, D, E
A, B, C, D, E, F
L-PEPTIDE LINKINGC5 H9 N O3PRO
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.55 Å
  • R-Value Free: 0.204 
  • R-Value Work: 0.166 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 23.649α = 90
b = 26.928β = 89.93
c = 79.656γ = 90
Software Package:
Software NamePurpose
SHELXmodel building
SHELXL-97refinement
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-01-12
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2014-09-17
    Changes: Database references
  • Version 1.3: 2023-11-01
    Changes: Data collection, Database references, Derived calculations, Refinement description