3W3A

Crystal structure of V1-ATPase at 3.9 angstrom resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.90 Å
  • R-Value Free: 0.381 
  • R-Value Work: 0.328 
  • R-Value Observed: 0.328 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Origin of Asymmetry at the Intersubunit Interfaces of V1-ATPase from Thermusthermophilus

Nagamatsu, Y.Takeda, K.Kuranaga, T.Numoto, N.Miki, K.

(2013) J Mol Biol 425: 2699-2708

  • DOI: https://doi.org/10.1016/j.jmb.2013.04.022
  • Primary Citation of Related Structures:  
    3W3A

  • PubMed Abstract: 

    V-type ATPase (V-ATPase) is one of the rotary ATPase complexes that mediate energy conversion between the chemical energy of ATP and the ion gradient across the membrane through a rotary catalytic mechanism. Because V-ATPase has structural features similar to those of well-studied F-type ATPase, the structure is expected to highlight the common essence of the torque generation of rotary ATPases. Here, we report a complete model of the extra-membrane domain of the V-ATPase (V1-ATPase) of a thermophilic bacterium, Thermus thermophilus, consisting of three A subunits, three B subunits, one D subunit, and one F subunit. The X-ray structure at 3.9Å resolution provides detailed information about the interactions between A3B3 and DF subcomplexes as well as interactions among the respective subunits, which are defined by the properties of side chains. Asymmetry at the intersubunit interfaces was detected from the structural differences among the three AB pairs in the different reaction states, while the large interdomain motion in the catalytic A subunits was not observed unlike F1 from various species and V1 from Enterococcus hirae. Asymmetry is mainly realized by rigid-body rearrangements of the relative position between A and B subunits. This is consistent with the previous observations by the high-resolution electron microscopy for the whole V-ATPase complexes. Therefore, our result plausibly implies that the essential motion for the torque generation is not the large interdomain movement of the catalytic subunits but the rigid-body rearrangement of subunits.


  • Organizational Affiliation

    Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase alpha chain
A, B, C, I, J
A, B, C, I, J, K
577Thermus thermophilus HB8Mutation(s): 0 
EC: 3.6.3.14
UniProt
Find proteins for Q56403 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore Q56403 
Go to UniProtKB:  Q56403
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ56403
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase beta chain
D, E, F, L, M
D, E, F, L, M, N
457Thermus thermophilus HB8Mutation(s): 0 
EC: 3.6.3.14
UniProt
Find proteins for Q56404 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore Q56404 
Go to UniProtKB:  Q56404
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ56404
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase subunit D
G, O
210Thermus thermophilus HB8Mutation(s): 0 
EC: 3.6.3.14
UniProt
Find proteins for O87880 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore O87880 
Go to UniProtKB:  O87880
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO87880
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 4
MoleculeChains Sequence LengthOrganismDetailsImage
V-type ATP synthase subunit F
H, P
100Thermus thermophilus HB8Mutation(s): 0 
EC: 3.6.3.14
UniProt
Find proteins for P74903 (Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8))
Explore P74903 
Go to UniProtKB:  P74903
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP74903
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.90 Å
  • R-Value Free: 0.381 
  • R-Value Work: 0.328 
  • R-Value Observed: 0.328 
  • Space Group: P 3 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 382.144α = 90
b = 382.144β = 90
c = 148.248γ = 120
Software Package:
Software NamePurpose
SOLVEphasing
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2013-05-15
    Type: Initial release
  • Version 1.1: 2013-09-04
    Changes: Database references
  • Version 1.2: 2017-11-22
    Changes: Refinement description
  • Version 1.3: 2024-03-20
    Changes: Data collection, Database references, Derived calculations