3HFH

Crystal structure of tandem FF domains


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.283 
  • R-Value Work: 0.230 
  • R-Value Observed: 0.235 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal Structure of the Three Tandem FF Domains of the Transcription Elongation Regulator CA150.

Lu, M.Yang, J.Ren, Z.Sabui, S.Espejo, A.Bedford, M.T.Jacobson, R.H.Jeruzalmi, D.McMurray, J.S.Chen, X.

(2009) J Mol Biol 393: 397-408

  • DOI: https://doi.org/10.1016/j.jmb.2009.07.086
  • Primary Citation of Related Structures:  
    3HFH

  • PubMed Abstract: 

    FF domains are small protein-protein interaction modules that have two flanking conserved phenylalanine residues. They are present in proteins involved in transcription, RNA splicing, and signal transduction, and often exist in tandem arrays. Although several individual FF domain structures have been determined by NMR, the tandem nature of most FF domains has not been revealed. Here we report the 2.7-A-resolution crystal structure of the first three FF domains of the human transcription elongation factor CA150. Each FF domain is composed of three alpha-helices and a 3(10) helix between alpha-helix 2 and alpha-helix 3. The most striking feature of the structure is that an FF domain is connected to the next by an alpha-helix that continues from helix 3 to helix 1 of the next. The consequent elongated arrangement allows exposure of many charged residues within the region that can be engaged in interaction with other molecules. Binding studies using a peptide ligand suggest that a specific conformation of the FF domains might be required to achieve higher-affinity binding. Additionally, we explore potential DNA binding of the FF construct used in this study. Overall, we provide the first crystal structure of an FF domain and insights into the tandem nature of the FF domains and suggest that, in addition to protein binding, FF domains might be involved in DNA binding.


  • Organizational Affiliation

    Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Transcription elongation regulator 1
A, B
190Homo sapiensMutation(s): 0 
Gene Names: CA150TAF2STCERG1
UniProt & NIH Common Fund Data Resources
Find proteins for O14776 (Homo sapiens)
Explore O14776 
Go to UniProtKB:  O14776
PHAROS:  O14776
GTEx:  ENSG00000113649 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO14776
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  2 Unique
IDChains TypeFormula2D DiagramParent
MLY
Query on MLY
A, B
L-PEPTIDE LINKINGC8 H18 N2 O2LYS
MSE
Query on MSE
A, B
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.70 Å
  • R-Value Free: 0.283 
  • R-Value Work: 0.230 
  • R-Value Observed: 0.235 
  • Space Group: P 6 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 141.3α = 90
b = 141.3β = 90
c = 155.42γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
PHASERphasing
PHENIXrefinement
PDB_EXTRACTdata extraction
HKL-2000data collection

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-08-18
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2017-11-01
    Changes: Refinement description