3GIB

Crystal Structure of the Complex of the E. coli Hfq with Poly(A)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.223 
  • R-Value Observed: 0.225 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structure of Escherichia coli Hfq bound to polyriboadenylate RNA

Link, T.M.Valentin-Hansen, P.Brennan, R.G.

(2009) Proc Natl Acad Sci U S A 106: 19292-19297

  • DOI: https://doi.org/10.1073/pnas.0908744106
  • Primary Citation of Related Structures:  
    3GIB

  • PubMed Abstract: 

    Hfq is a small, highly abundant hexameric protein that is found in many bacteria and plays a critical role in mRNA expression and RNA stability. As an "RNA chaperone," Hfq binds AU-rich sequences and facilitates the trans annealing of small RNAs (sRNAs) to their target mRNAs, typically resulting in the down-regulation of gene expression. Hfq also plays a key role in bacterial RNA decay by binding tightly to polyadenylate [poly(A)] tracts. The structural mechanism by which Hfq recognizes and binds poly(A) is unknown. Here, we report the crystal structure of Escherichia coli Hfq bound to the poly(A) RNA, A(15). The structure reveals a unique RNA binding mechanism. Unlike uridine-containing sequences, which bind to the "proximal" face, the poly(A) tract binds to the "distal" face of Hfq using 6 tripartite binding motifs. Each motif consists of an adenosine specificity site (A site), which is effected by peptide backbone hydrogen bonds, a purine nucleotide selectivity site (R site), and a sequence-nondiscriminating RNA entrance/exit site (E site). The resulting implication that Hfq can bind poly(A-R-N) triplets, where R is a purine nucleotide and N is any nucleotide, was confirmed by binding studies. Indeed, Hfq bound to the oligoribonucleotides (AGG)(8), (AGC)(8), and the shorter (A-R-N)(4) sequence, AACAACAAGAAG, with nanomolar affinities. The abundance of (A-R-N)(4) and (A-R-N)(5) triplet repeats in the E. coli genome suggests additional RNA targets for Hfq. Further, the structure provides insight into Hfq-mediated sRNA-mRNA annealing and the role of Hfq in RNA decay.


  • Organizational Affiliation

    Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030-4009, USA.


Macromolecules

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Protein hfq
A, B, C
68Escherichia coli K-12Mutation(s): 0 
Gene Names: b4172hfqJW4130
UniProt
Find proteins for P0A6X3 (Escherichia coli (strain K12))
Explore P0A6X3 
Go to UniProtKB:  P0A6X3
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A6X3
Sequence Annotations
Expand
  • Reference Sequence

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains LengthOrganismImage
5'-R(P*AP*AP*AP*AP*AP*AP*AP*AP*A)-3'D [auth H]9N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.223 
  • R-Value Observed: 0.225 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 66.534α = 90
b = 88.96β = 90
c = 39.635γ = 90
Software Package:
Software NamePurpose
MOSFLMdata reduction
SCALAdata scaling
MOLREPphasing
REFMACrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-11-17
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 1.2: 2017-02-01
    Changes: Structure summary
  • Version 1.3: 2018-04-04
    Changes: Advisory, Data collection
  • Version 1.4: 2024-02-21
    Changes: Advisory, Data collection, Database references, Derived calculations