2Y2E

crystal structure of AmpD grown at pH 5.5


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.272 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.206 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal Structures of Bacterial Peptidoglycan Amidase Ampd and an Unprecedented Activation Mechanism.

Carrasco-Lopez, C.Rojas-Altuve, A.Zhang, W.Hesek, D.Lee, M.Barbe, S.Andre, I.Ferrer, P.Silva-Martin, N.Castro, G.R.Martinez-Ripoll, M.Mobashery, S.Hermoso, J.A.

(2011) J Biol Chem 286: 31714

  • DOI: https://doi.org/10.1074/jbc.M111.264366
  • Primary Citation of Related Structures:  
    2Y28, 2Y2B, 2Y2C, 2Y2D, 2Y2E

  • PubMed Abstract: 

    AmpD is a cytoplasmic peptidoglycan (PG) amidase involved in bacterial cell-wall recycling and in induction of β-lactamase, a key enzyme of β-lactam antibiotic resistance. AmpD belongs to the amidase_2 family that includes zinc-dependent amidases and the peptidoglycan-recognition proteins (PGRPs), highly conserved pattern-recognition molecules of the immune system. Crystal structures of Citrobacter freundii AmpD were solved in this study for the apoenzyme, for the holoenzyme at two different pH values, and for the complex with the reaction products, providing insights into the PG recognition and the catalytic process. These structures are significantly different compared with the previously reported NMR structure for the same protein. The NMR structure does not possess an accessible active site and shows the protein in what is proposed herein as an inactive "closed" conformation. The transition of the protein from this inactive conformation to the active "open" conformation, as seen in the x-ray structures, was studied by targeted molecular dynamics simulations, which revealed large conformational rearrangements (as much as 17 Å) in four specific regions representing one-third of the entire protein. It is proposed that the large conformational change that would take the inactive NMR structure to the active x-ray structure represents an unprecedented mechanism for activation of AmpD. Analysis is presented to argue that this activation mechanism might be representative of a regulatory process for other intracellular members of the bacterial amidase_2 family of enzymes.


  • Organizational Affiliation

    Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
1,6-ANHYDRO-N-ACETYLMURAMYL-L-ALANINE AMIDASE AMPD
A, B, C
187Citrobacter freundiiMutation(s): 0 
EC: 3.5.1.28
UniProt
Find proteins for P82974 (Citrobacter freundii)
Explore P82974 
Go to UniProtKB:  P82974
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP82974
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.272 
  • R-Value Work: 0.201 
  • R-Value Observed: 0.206 
  • Space Group: P 32
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 67.982α = 90
b = 67.982β = 90
c = 93.125γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
SCALAdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2011-07-20
    Type: Initial release
  • Version 1.1: 2011-09-14
    Changes: Database references
  • Version 1.2: 2023-12-20
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description