2WPW

Tandem GNAT protein from the clavulanic acid biosynthesis pathway (without AcCoA)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.38 Å
  • R-Value Free: 0.266 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.212 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Crystallographic and mass spectrometric analyses of a tandem GNAT protein from the clavulanic acid biosynthesis pathway.

Iqbal, A.Arunlanantham, H.Brown, T.Chowdhury, R.Clifton, I.J.Kershaw, N.J.Hewitson, K.S.McDonough, M.A.Schofield, C.J.

(2010) Proteins 78: 1398-1407

  • DOI: https://doi.org/10.1002/prot.22653
  • Primary Citation of Related Structures:  
    2WPW, 2WPX

  • PubMed Abstract: 

    (3R,5R)-Clavulanic acid (CA) is a clinically important inhibitor of Class A beta-lactamases. Sequence comparisons suggest that orf14 of the clavulanic acid biosynthesis gene cluster encodes for an acetyl transferase (CBG). Crystallographic studies reveal CBG to be a member of the emerging structural subfamily of tandem Gcn5-related acetyl transferase (GNAT) proteins. Two crystal forms (C2 and P2(1) space groups) of CBG were obtained; in both forms one molecule of acetyl-CoA (AcCoA) was bound to the N-terminal GNAT domain, with the C-terminal domain being unoccupied by a ligand. Mass spectrometric analyzes on CBG demonstrate that, in addition to one strongly bound AcCoA molecule, a second acyl-CoA molecule can bind to CBG. Succinyl-CoA and myristoyl-CoA displayed the strongest binding to the "second" CoA binding site, which is likely in the C-terminal GNAT domain. Analysis of the CBG structures, together with those of other tandem GNAT proteins, suggest that the AcCoA in the N-terminal GNAT domain plays a structural role whereas the C-terminal domain is more likely to be directly involved in acetyl transfer. The available crystallographic and mass spectrometric evidence suggests that binding of the second acyl-CoA occurs preferentially to monomeric rather than dimeric CBG. The N-terminal AcCoA binding site and the proposed C-terminal acyl-CoA binding site of CBG are compared with acyl-CoA binding sites of other tandem and single domain GNAT proteins.


  • Organizational Affiliation

    University of Oxford, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ORF14
A, B, C, D
339Streptomyces clavuligerusMutation(s): 0 
EC: 2.3.1
UniProt
Find proteins for Q8KRB5 (Streptomyces clavuligerus)
Explore Q8KRB5 
Go to UniProtKB:  Q8KRB5
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8KRB5
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.38 Å
  • R-Value Free: 0.266 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.212 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 75.449α = 90
b = 93.501β = 97.86
c = 126.43γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
SOLVEphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-12-29
    Type: Initial release
  • Version 1.1: 2011-11-09
    Changes: Database references, Derived calculations, Non-polymer description, Other, Refinement description, Version format compliance
  • Version 1.2: 2018-03-28
    Changes: Database references