2WEQ

Yeast Hsp90 N-terminal domain LI-IV mutant with Geldanamycin


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.193 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Structural Basis of the Radicicol Resistance Displayed by a Fungal Hsp90

Prodromou, C.Nuttall, J.M.Millson, S.H.Roe, S.M.Sim, T.S.Tan, D.Workman, P.Pearl, L.H.Piper, P.W.

(2009) ACS Chem Biol 4: 289

  • DOI: https://doi.org/10.1021/cb9000316
  • Primary Citation of Related Structures:  
    2WEP, 2WEQ, 2WER

  • PubMed Abstract: 

    Heat shock protein 90 (Hsp90) is a promising cancer drug target, as multiple oncogenic proteins are destabilized simultaneously when it loses its activity in tumor cells. Highly selective Hsp90 inhibitors, including the natural antibiotics geldanamycin (GdA) and radicicol (RAD), inactivate this essential molecular chaperone by occupying its nucleotide binding site. Often cancer drug therapy is compromised by the development of resistance, but a resistance to these Hsp90 inhibitors should not arise readily by mutation of those amino acids within Hsp90 that facilitate inhibitor binding, as these are required for the essential ATP binding/ATPase steps of the chaperone cycle and are tightly conserved. Despite this, the Hsp90 of a RAD-producing fungus is shown to possess an unusually low binding affinity for RAD but not GdA. Within its nucleotide binding site a normally conserved leucine is replaced by isoleucine, though the chaperone ATPase activity is not severely affected. Inserted into the Hsp90 of yeast, this conservative leucine to isoleucine substitution recreated this lowered affinity for RAD in vitro. It also generated a substantially enhanced resistance to RAD in vivo. Co-crystal structures reveal that the change to isoleucine is associated with a localized increase in the hydration of an Hsp90-bound RAD but not GdA. To the best of our knowledge, this is the first demonstration that it is possible for Hsp90 inhibitor resistance to arise by subtle alteration to the structure of Hsp90 itself.


  • Organizational Affiliation

    Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, U.K.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ATP-DEPENDENT MOLECULAR CHAPERONE HSP82220Saccharomyces cerevisiaeMutation(s): 2 
UniProt
Find proteins for P02829 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P02829 
Go to UniProtKB:  P02829
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP02829
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
GDM Binding MOAD:  2WEQ Kd: 1270 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.193 
  • Space Group: P 43 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 74.608α = 90
b = 74.608β = 90
c = 110.9γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
iMOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-04-14
    Type: Initial release
  • Version 1.1: 2011-11-02
    Changes: Database references, Derived calculations, Non-polymer description, Other, Refinement description, Version format compliance
  • Version 1.2: 2012-03-21
    Changes: Other