2W7Y

Structure of a Streptococcus pneumoniae solute-binding protein in complex with the blood group A-trisaccharide.


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.35 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.213 
  • R-Value Observed: 0.216 

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

Blood-Group Antigen Recognition by a Solute-Binding Protein from a Serotype 3 Strain of Streptococcus Pneumoniae.

Higgins, M.A.Abbott, D.W.Boulanger, M.J.Boraston, A.B.

(2009) J Mol Biol 388: 299

  • DOI: https://doi.org/10.1016/j.jmb.2009.03.012
  • Primary Citation of Related Structures:  
    2W7Y

  • PubMed Abstract: 

    Streptococcus pneumoniae is a common bacterial pathogen that is well known for its ability to cause acute respiratory disease (pneumonia), ear infections, and other serious illnesses. This Gram-positive bacterium relies on its carbohydrate-metabolizing capabilities for full virulence in its host; however, the range of glycan targets that it can attack is presently not fully appreciated. S. pneumoniae is known to have a fucose utilization operon that in the TIGR4 strain plays a role in its virulence. Here we identify a second type of fucose utilization operon that is present in a subset of S. pneumoniae strains, including the serotype 3 strain SP3-BS71. This operon contains a transporter with a solute-binding protein, FcsSBP (fucose solute-binding protein), that interacts tightly (Ka approximately 1 x 10(6) M(-1)) and specifically with soluble A- and B-antigen trisaccharides but displays no selectivity between these two sugars. The structure of the FcsSBP in complex with the A-trisaccharide antigen, determined to 2.35 A, reveals its mode of binding to the reducing end of this sugar, thus highlighting this protein's requirement for soluble blood group antigen ligands. Overall, this report exposes a heretofore unknown capability of certain S. pneumoniae strains to transport and potentially metabolize the histo-blood group antigen carbohydrates of its host.


  • Organizational Affiliation

    Biochemistry and Microbiology, University of Victoria, PO Box 3055, STN CSC, Victoria, BC, Canada V8W 3P6.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PROBABLE SUGAR ABC TRANSPORTER, SUGAR-BINDING PROTEIN
A, B
430Streptococcus pneumoniae SP3-BS71Mutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
alpha-L-fucopyranose-(1-2)-[2-acetamido-2-deoxy-alpha-D-galactopyranose-(1-3)]beta-D-galactopyranose
C, D
3N/A
Glycosylation Resources
GlyTouCan:  G00066MO
GlyCosmos:  G00066MO
GlyGen:  G00066MO
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MSE
Query on MSE
A, B
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Binding Affinity Annotations 
IDSourceBinding Affinity
A2G PDBBind:  2W7Y Kd: 830 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.35 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.213 
  • R-Value Observed: 0.216 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 36.99α = 90
b = 104.9β = 89.95
c = 97.7γ = 90
Software Package:
Software NamePurpose
REFMACrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-03-10
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Other, Structure summary