2V20

Structure of a TEM-1 beta-lactamase insertant allosterically regulated by kanamycin and anions. Complex with sulfate.


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.67 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.180 
  • R-Value Observed: 0.182 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Engineering an Allosteric Binding Site for Aminoglycosides Into Tem1-Beta-Lactamase.

Volkov, A.N.Barrios, H.Mathonet, P.Evrard, C.Ubbink, M.Declercq, J.P.Soumillion, P.Fastrez, J.

(2011) Chembiochem 12: 904

  • DOI: https://doi.org/10.1002/cbic.201000568
  • Primary Citation of Related Structures:  
    2V1Z, 2V20

  • PubMed Abstract: 

    Allosteric regulation of enzyme activity is a remarkable property of many biological catalysts. Up till now, engineering an allosteric regulation into native, unregulated enzymes has been achieved by the creation of hybrid proteins in which a natural receptor, whose conformation is controlled by ligand binding, is inserted into an enzyme structure. Here, we describe a monomeric enzyme, TEM1-β-lactamase, that features an allosteric aminoglycoside binding site created de novo by directed-evolution methods. β-Lactamases are highly efficient enzymes involved in the resistance of bacteria against β-lactam antibiotics, such as penicillin. Aminoglycosides constitute another class of antibiotics that prevent bacterial protein synthesis, and are neither substrates nor ligands of the native β-lactamases. Here we show that the engineered enzyme is regulated by the binding of kanamycin and other aminoglycosides. Kinetic and structural analyses indicate that the activation mechanism involves expulsion of an inhibitor that binds to an additional, fortuitous site on the engineered protein. These analyses also led to the defining of conditions that allowed an aminoglycoside to be detected at low concentration.


  • Organizational Affiliation

    Laboratoire d'Ingénierie des Protéines et des Peptides, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
BETA-LACTAMASE TEM291Escherichia coliMutation(s): 8 
EC: 3.5.2.6
UniProt
Find proteins for P62593 (Escherichia coli)
Explore P62593 
Go to UniProtKB:  P62593
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP62593
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.67 Å
  • R-Value Free: 0.223 
  • R-Value Work: 0.180 
  • R-Value Observed: 0.182 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 46.08α = 90
b = 72.142β = 90
c = 73.495γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata reduction
XSCALEdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-06-24
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2019-07-24
    Changes: Data collection
  • Version 1.4: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description