2ROH

The DNA binding domain of RTBP1


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Solution structure of the DNA binding domain of rice telomere binding protein RTBP1

Ko, S.Yu, E.Y.Shin, J.Yoo, H.H.Tanaka, T.Kim, W.T.Cho, H.S.Lee, W.Chung, I.K.

(2009) Biochemistry 48: 827-838

  • DOI: https://doi.org/10.1021/bi801270g
  • Primary Citation of Related Structures:  
    2ROH

  • PubMed Abstract: 

    RTBP1 is a rice telomeric protein that binds to the duplex array of TTTAGGG repeats at chromosome ends. The DNA binding domain of RTBP1 contains a Myb-type DNA binding motif and a highly conserved C-terminal Myb extension that is unique to plant telomeric proteins. Using an electrophoretic mobility shift assay, we identified the C-terminal 110-amino acid region (RTBP1(506-615)) as the minimal telomeric DNA binding domain, suggesting that the Myb extension is required for binding plant telomeric DNA. Like other telomeric proteins such as human TRF1 and yeast Rap1, RTBP1 induced a DNA bending in the telomeric repeat sequence, suggesting that RTBP1 may play a role in establishing and/or maintaining an active telomere configuration in vivo. To elucidate the DNA binding mode of RTBP1, we determined the three-dimensional structure of RTBP1(506-615) in solution by NMR spectroscopy. The overall structure of RTBP1(506-615) is composed of four alpha-helices and stabilized by three hydrophobic patches. The second and third helices in RTBP1 form a helix-turn-helix motif that interacts directly with DNA. The fourth helix located in the Myb extension is essential for binding to telomeric DNA via stabilization of the overall structure of the RTBP1 DNA binding domain. When DNA bound to RTBP1(506-615), large chemical shift perturbations were induced in the N-terminal arm, helix 3, and the loop between helices 3 and 4. These results suggest that helix 3 functions as a sequence-specific recognition helix while the N-terminal arm stabilizes the DNA binding.


  • Organizational Affiliation

    Department of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Telomere binding protein-1122Oryza sativaMutation(s): 0 
UniProt
Find proteins for Q9LL45 (Oryza sativa subsp. japonica)
Explore Q9LL45 
Go to UniProtKB:  Q9LL45
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9LL45
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Released Date: 2009-03-24 
  • Deposition Author(s): Lee, W., Ko, S.

Revision History  (Full details and data files)

  • Version 1.0: 2009-03-24
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2020-02-26
    Changes: Database references, Derived calculations, Other
  • Version 1.3: 2023-06-14
    Changes: Database references, Other