2RHW

Crystal Structure of the S112A mutant of a C-C hydrolase, BphD from Burkholderia xenovorans LB400, in complex with 3,10-Di-Fluoro HOPDA


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.57 Å
  • R-Value Free: 0.200 
  • R-Value Work: 0.171 
  • R-Value Observed: 0.173 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

The Molecular Basis for Inhibition of BphD, a C-C Bond Hydrolase Involved in Polychlorinated Biphenyls Degradation: LARGE 3-SUBSTITUENTS PREVENT TAUTOMERIZATION.

Bhowmik, S.Horsman, G.P.Bolin, J.T.Eltis, L.D.

(2007) J Biol Chem 282: 36377-36385

  • DOI: https://doi.org/10.1074/jbc.M707035200
  • Primary Citation of Related Structures:  
    2RHT, 2RHW

  • PubMed Abstract: 

    The microbial degradation of polychlorinated biphenyls (PCBs) by the biphenyl catabolic (Bph) pathway is limited in part by the pathway's fourth enzyme, BphD. BphD catalyzes an unusual carbon-carbon bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA), in which the substrate is subject to histidine-mediated enol-keto tautomerization prior to hydrolysis. Chlorinated HOPDAs such as 3-Cl HOPDA inhibit BphD. Here we report that BphD preferentially hydrolyzed a series of 3-substituted HOPDAs in the order H>F>Cl>Me, suggesting that catalysis is affected by steric, not electronic, determinants. Transient state kinetic studies performed using wild-type BphD and the hydrolysis-defective S112A variant indicated that large 3-substituents inhibited His-265-catalyzed tautomerization by 5 orders of magnitude. Structural analyses of S112A.3-Cl HOPDA and S112A.3,10-diF HOPDA complexes revealed a non-productive binding mode in which the plane defined by the carbon atoms of the dienoate moiety of HOPDA is nearly orthogonal to that of the proposed keto tautomer observed in the S112A.HOPDA complex. Moreover, in the 3-Cl HOPDA complex, the 2-hydroxo group is moved by 3.6 A from its position near the catalytic His-265 to hydrogen bond with Arg-190 and access of His-265 is blocked by the 3-Cl substituent. Nonproductive binding may be stabilized by interactions involving the 3-substituent with non-polar side chains. Solvent molecules have poor access to C6 in the S112A.3-Cl HOPDA structure, more consistent with hydrolysis occurring via an acyl-enzyme than a gem-diol intermediate. These results provide insight into engineering BphD for PCB degradation.


  • Organizational Affiliation

    Purdue Cancer Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase283Paraburkholderia xenovorans LB400Mutation(s): 1 
EC: 3.7.1
UniProt
Find proteins for P47229 (Paraburkholderia xenovorans (strain LB400))
Explore P47229 
Go to UniProtKB:  P47229
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP47229
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.57 Å
  • R-Value Free: 0.200 
  • R-Value Work: 0.171 
  • R-Value Observed: 0.173 
  • Space Group: I 41 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 117.956α = 90
b = 117.956β = 90
c = 87.193γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
MOLREPphasing
REFMACrefinement
PDB_EXTRACTdata extraction
HKL-2000data reduction

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-11-13
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 1.2: 2017-10-25
    Changes: Refinement description
  • Version 1.3: 2021-10-20
    Changes: Database references, Derived calculations
  • Version 1.4: 2024-02-21
    Changes: Data collection