2KVF

Structure of the three-Cys2His2 domain of mouse testis zinc finger protein


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 15 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structure and DNA binding characteristics of the three-Cys(2)His(2) domain of mouse testis zinc finger protein.

Chou, C.-C.Lou, Y.-C.Tang, T.K.Chen, C.

(2010) Proteins 78: 2202-2212

  • DOI: https://doi.org/10.1002/prot.22732
  • Primary Citation of Related Structures:  
    2KVF, 2KVG, 2KVH

  • PubMed Abstract: 

    The C-terminal three-Cys(2)His(2) zinc-finger domain (TZD) of mouse testis zinc-finger protein binds to the 5'-TGTACAGTGT-3' at the Aie1 (aurora-C) promoter with high specificity. Interestingly, the primary sequence of TZD is unique, possessing two distinct linkers, TGEKP and GAAP, and distinct residues at presumed DNA binding sites at each finger, especially finger 3. A K(d) value of approximately 10(-8) M was obtained from surface plasmon resonance analysis for the TZD-DNA complex. NMR structure of the free TZD showed that each zinc finger forms a typical beta beta alpha fold. On binding to DNA, chemical shift perturbations and the R(2) transverse relaxation rate in finger 3 are significantly smaller than those in fingers 1 and 2, which indicates that the DNA binding affinity in finger 3 is weaker. Furthermore, the shift perturbations between TZD in complex with the cognate DNA and its serial mutants revealed that both ADE7 and CYT8, underlined in 5'-ATATGTACAGTGTTAT-3', are critical in specific binding, and the DNA binding in finger 3 is sequence independent. Remarkably, the shift perturbations in finger 3 on the linker mutation of TZD (GAAP mutated to TGEKP) were barely detected, which further indicates that finger 3 does not play a critical role in DNA sequence-specific recognition. The complex model showed that residues important for DNA binding are mainly located on positions -1, 2, 3, and 6 of alpha-helices in fingers 1 and 2. The DNA sequence and nonsequence-specific bindings occurring simultaneously in TZD provide valuable information for better understanding of protein-DNA recognition.


  • Organizational Affiliation

    Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, Republic of China.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Zinc finger and BTB domain-containing protein 3228Mus musculusMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for Q9JKD9 (Mus musculus)
Explore Q9JKD9 
Go to UniProtKB:  Q9JKD9
IMPC:  MGI:1891838
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9JKD9
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download Ideal Coordinates CCD File 
B [auth A]ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 15 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-04-14
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2019-12-25
    Changes: Data collection, Database references, Derived calculations