2C3N

Human glutathione-S-transferase T1-1, apo form


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.246 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.216 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structural Basis of the Suppressed Catalytic Activity of Wild-Type Human Glutathione Transferase T1-1 Compared to its W234R Mutant.

Tars, K.Larsson, A.-K.Shokeer, A.Olin, B.Mannervik, B.Kleywegt, G.J.

(2006) J Mol Biol 355: 96

  • DOI: https://doi.org/10.1016/j.jmb.2005.10.049
  • Primary Citation of Related Structures:  
    2C3N, 2C3Q, 2C3T

  • PubMed Abstract: 

    The crystal structures of wild-type human theta class glutathione-S-transferase (GST) T1-1 and its W234R mutant, where Trp234 was replaced by Arg, were solved both in the presence and absence of S-hexyl-glutathione. The W234R mutant was of interest due to its previously observed enhanced catalytic activity compared to the wild-type enzyme. GST T1-1 from rat and mouse naturally contain Arg in position 234, with correspondingly high catalytic efficiency. The overall structure of GST T1-1 is similar to that of GST T2-2, as expected from their 53% sequence identity at the protein level. Wild-type GST T1-1 has the side-chain of Trp234 occupying a significant portion of the active site. This bulky residue prevents efficient binding of both glutathione and hydrophobic substrates through steric hindrance. The wild-type GST T1-1 crystal structure, obtained from co-crystallization experiments with glutathione and its derivatives, showed no electron density for the glutathione ligand. However, the structure of GST T1-1 mutant W234R showed clear electron density for S-hexyl-glutathione after co-crystallization. In contrast to Trp234 in the wild-type structure, the side-chain of Arg234 in the mutant does not occupy any part of the substrate-binding site. Instead, Arg234 is pointing in a different direction and, in addition, interacts with the carboxylate group of glutathione. These findings explain our earlier observation that the W234R mutant has a markedly improved catalytic activity with most substrates tested to date compared to the wild-type enzyme. GST T1-1 catalyzes detoxication reactions as well as reactions that result in toxic products, and our findings therefore suggest that humans have gained an evolutionary advantage by a partially disabled active site.


  • Organizational Affiliation

    Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 590, SE-751 24, Uppsala, Sweden. kaspars@xray.bmc.uu.se


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GLUTATHIONE S-TRANSFERASE THETA 1
A, B, C, D
247Homo sapiensMutation(s): 0 
EC: 2.5.1.18
UniProt & NIH Common Fund Data Resources
Find proteins for P30711 (Homo sapiens)
Explore P30711 
Go to UniProtKB:  P30711
PHAROS:  P30711
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP30711
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
IOD
Query on IOD

Download Ideal Coordinates CCD File 
E [auth A]
F [auth A]
G [auth A]
H [auth A]
I [auth B]
E [auth A],
F [auth A],
G [auth A],
H [auth A],
I [auth B],
J [auth B],
K [auth B],
L [auth B],
M [auth C],
N [auth C],
O [auth C],
P [auth D],
Q [auth D],
R [auth D],
S [auth D]
IODIDE ION
I
XMBWDFGMSWQBCA-UHFFFAOYSA-M
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.246 
  • R-Value Work: 0.214 
  • R-Value Observed: 0.216 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 164.577α = 90
b = 110.986β = 90
c = 56.295γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-11-30
    Type: Initial release
  • Version 1.1: 2011-05-07
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2019-05-08
    Changes: Data collection, Experimental preparation, Other
  • Version 1.4: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description