2BMW

Ferredoxin: NADP+ Reductase Mutant With Thr 155 Replaced By Gly, Ala 160 Replaced By Thr, Leu 263 Replaced By Pro, Arg 264 Replaced By Pro and Gly 265 Replaced by Pro (T155G-A160T-L263P-R264P-G265P)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.207 
  • R-Value Work: 0.185 
  • R-Value Observed: 0.185 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Protein Motifs Involved in Coenzyme Interaction and Enzymatic Efficiency in Anabaena Ferredoxin-Nadp+ Reductase.

Peregrina, J.R.Herguedas, B.Hermoso, J.A.Martinez-Julvez, M.Medina, M.

(2009) Biochemistry 48: 3109

  • DOI: https://doi.org/10.1021/bi802077c
  • Primary Citation of Related Structures:  
    2BMW, 2VYQ, 2VZL

  • PubMed Abstract: 

    Ferredoxin-NADP+ reductases (FNRs) must determine the coenzyme specificity and allow the transient encounter between N5 of its flavin cofactor and C4 of the coenzyme nicotinamide for efficient hydride transfer. Combined site-directed replacements in different putative determinants of the FNR coenzyme specificity were simultaneously produced. The resulting variants were structurally and functionally analyzed for their binding and hydride transfer abilities to the FNR physiological coenzyme NADP+/H, as well as to NAD+/H. The previously studied Y303S mutation is the only one that significantly enhances specificity for NAD+. Combination of mutations from the pyrophosphate or 2'-phosphate regions, even including Y303S, does not improve activity with NAD+, despite structures of these FNRs show how particular coenzyme-binding regions resembled motifs found in NAD+/H-dependent enzymes of the FNR family. Therefore, the "rational approach" did not succeed well, and coenzyme specificity redesign in the FNR family will be more complex than that anticipated in other NADP+/NAD+ families.


  • Organizational Affiliation

    Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, and Institute of Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, 50009 Zaragoza, Spain.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
FERREDOXIN--NADP REDUCTASE304Nostoc sp. PCC 7119Mutation(s): 5 
EC: 1.18.1.2
UniProt
Find proteins for P21890 (Nostoc sp. (strain ATCC 29151 / PCC 7119))
Explore P21890 
Go to UniProtKB:  P21890
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP21890
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FAD
Query on FAD

Download Ideal Coordinates CCD File 
B [auth A]FLAVIN-ADENINE DINUCLEOTIDE
C27 H33 N9 O15 P2
VWWQXMAJTJZDQX-UYBVJOGSSA-N
SO4
Query on SO4

Download Ideal Coordinates CCD File 
C [auth A]SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.207 
  • R-Value Work: 0.185 
  • R-Value Observed: 0.185 
  • Space Group: P 65
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 85.97α = 90
b = 85.97β = 90
c = 96.25γ = 120
Software Package:
Software NamePurpose
CNSrefinement
MOSFLMdata reduction
SCALAdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-06-22
    Type: Initial release
  • Version 1.1: 2016-01-27
    Changes: Database references, Derived calculations, Other, Refinement description, Source and taxonomy, Structure summary, Version format compliance
  • Version 1.2: 2017-03-29
    Changes: Source and taxonomy, Structure summary
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description