2ADP

Nitrated Human Manganese Superoxide Dismutase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.197 
  • R-Value Observed: 0.197 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation.

Quint, P.Reutzel, R.Mikulski, R.McKenna, R.Silverman, D.N.

(2006) Free Radic Biol Med 40: 453-458

  • DOI: https://doi.org/10.1016/j.freeradbiomed.2005.08.045
  • Primary Citation of Related Structures:  
    2ADP, 2ADQ

  • PubMed Abstract: 

    A cellular consequence of the reaction of superoxide and nitric oxide is enhanced peroxynitrite levels. Reaction of peroxynitrite with manganese superoxide dismutase (MnSOD) causes nitration of the active-site residue Tyr34 and nearly complete inhibition of catalysis. We report the crystal structures at 2.4 A resolution of human MnSOD nitrated by peroxynitrite and the unmodified MnSOD. A comparison of these structures showed no significant conformational changes of active-site residues or solvent displacement. The side chain of 3-nitrotyrosine 34 had a single conformation that extended toward the manganese with O1 of the nitro group within hydrogen-bonding distance (3.1 A) of Nepsilon2 of the second-shell ligand Gln143. Also, nitration of Tyr34 caused a weakening, as evidenced by the lengthening, of a hydrogen bond between its phenolic OH and Gln143, part of an extensive hydrogen-bond network in the active site. Inhibition of catalysis can be attributed to a steric effect of 3-nitrotyrosine 34 that impedes substrate access and binding, and alteration of the hydrogen-bond network that supports proton transfer in catalysis. It is also possible that an electrostatic effect of the nitro group has altered the finely tuned redox potential necessary for efficient catalysis, although the redox potential of nitrated MnSOD has not been measured.


  • Organizational Affiliation

    Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610-0245, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Superoxide dismutase [Mn]198Homo sapiensMutation(s): 1 
Gene Names: SOD2
EC: 1.15.1.1
UniProt & NIH Common Fund Data Resources
Find proteins for P04179 (Homo sapiens)
Explore P04179 
Go to UniProtKB:  P04179
PHAROS:  P04179
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP04179
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
MN
Query on MN

Download Ideal Coordinates CCD File 
B [auth A]MANGANESE (II) ION
Mn
WAEMQWOKJMHJLA-UHFFFAOYSA-N
K
Query on K

Download Ideal Coordinates CCD File 
C [auth A]POTASSIUM ION
K
NPYPAHLBTDXSSS-UHFFFAOYSA-N
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
NIY
Query on NIY
A
L-PEPTIDE LINKINGC9 H10 N2 O5TYR
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.197 
  • R-Value Observed: 0.197 
  • Space Group: P 61 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 81.27α = 90
b = 81.27β = 90
c = 242.181γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
CNSrefinement
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-07-04
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance