2ACU

TYROSINE-48 IS THE PROTON DONOR AND HISTIDINE-110 DIRECTS SUBSTRATE STEREOCHEMICAL SELECTIVITY IN THE REDUCTION REACTION OF HUMAN ALDOSE REDUCTASE: ENZYME KINETICS AND THE CRYSTAL STRUCTURE OF THE Y48H MUTANT ENZYME


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.76 Å
  • R-Value Work: 0.187 
  • R-Value Observed: 0.187 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme.

Bohren, K.M.Grimshaw, C.E.Lai, C.J.Harrison, D.H.Ringe, D.Petsko, G.A.Gabbay, K.H.

(1994) Biochemistry 33: 2021-2032

  • DOI: https://doi.org/10.1021/bi00174a007
  • Primary Citation of Related Structures:  
    2ACU

  • PubMed Abstract: 

    The active site of human aldose reductase contains two residues, His110 and Tyr48, either of which could be the proton donor during catalysis. Tyr48 is a candidate since its hydroxyl group is in proximity to Lys77 and thus may have an abnormally low pKa value. To distinguish between these possibilities, we used site-directed mutagenesis to create the H110Q and H110A, the Y48F, Y48H, and Y48S, and the K77M mutant enzymes. The two His110 mutants resulted in a 1000-20,000-fold drop in kcat/Km, respectively, for the reduction of DL-glyceraldehyde at pH 7. The Y48F mutation caused total loss of activity, whereas the Y48H and Y48S mutants retained catalytic activity with kcat/Km reduced by 5 orders of magnitude. The K77M mutant is an inactive enzyme. Kinetic studies using xylose stereoisomers show that the wild-type enzyme distinguishes between D-xylose, L-xylose, and D-lyxose up to 150-fold better than the H110A or H110Q mutants. The His110 mutants do not effectively discriminate between these isomers (4-11-fold). The crystal structure of the Y48H mutant refined at 1.8-A resolution shows that the overall structure is not significantly different from the wild-type structure. Electron densities for the histidine side chain and a new water molecule fill the space occupied by Tyr48 in the wild-type enzyme. The water molecule is in hydrogen-bonding distance to the N zeta group of Lys77 and to the N epsilon of His48 and fills the space occupied by the hydroxyl group of tyrosine in the wild-type structure. These findings suggest that proton transfer is mediated in the Y48H mutant enzyme by the water molecule. The Y48H mutant shows large and equal primary deuterium isotope effects on kcat and kcat/Km (1.81 +/- 0.03), providing direct evidence for hydride transfer as the rate-determining step in this mutant. Deuterium solvent isotope effects indicate that the relative contribution of proton transfer to this step of the catalytic cascade is much less important for the Y48H mutant than for the wild-type enzyme [D2O(kcat/Km) = 1.06 +/- 0.02 and 4.73 +/- 0.23, respectively]. The kinetic and mutagenesis data, together with structural data, indicate that His 110 plays an important role in the orientation of substrates in the active site pocket, while Tyr48 is the proton donor during aldehyde reduction by aldose reductase.


  • Organizational Affiliation

    Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ALDOSE REDUCTASE315Homo sapiensMutation(s): 0 
EC: 1.1.1.21
UniProt & NIH Common Fund Data Resources
Find proteins for P15121 (Homo sapiens)
Explore P15121 
Go to UniProtKB:  P15121
PHAROS:  P15121
GTEx:  ENSG00000085662 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP15121
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NAP
Query on NAP

Download Ideal Coordinates CCD File 
B [auth A]NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE
C21 H28 N7 O17 P3
XJLXINKUBYWONI-NNYOXOHSSA-N
CIT
Query on CIT

Download Ideal Coordinates CCD File 
C [auth A]CITRIC ACID
C6 H8 O7
KRKNYBCHXYNGOX-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.76 Å
  • R-Value Work: 0.187 
  • R-Value Observed: 0.187 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 49.99α = 90
b = 67.14β = 90
c = 92.07γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1994-07-31
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-14
    Changes: Data collection, Database references, Derived calculations, Other