2W8Z

Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase with bound 6- phosphogluconate


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.185 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Geobacillus Stearothermophilus 6-Phosphogluconate Dehydrogenase, Complexed with 6-Phosphogluconate.

Cameron, S.Martini, V.P.Iulek, J.Hunter, W.N.

(2009) Acta Crystallogr Sect F Struct Biol Cryst Commun 65: 450

  • DOI: https://doi.org/10.1107/S1744309109012767
  • Primary Citation of Related Structures:  
    2W8Z, 2W90

  • PubMed Abstract: 

    Two crystal structures of recombinant Geobacillus stearothermophilus 6-phosphogluconate dehydrogenase (Gs6PDH) in complex with the substrate 6-phosphogluconate have been determined at medium resolution. Gs6PDH shares significant sequence identity and structural similarity with the enzymes from Lactococcus lactis, sheep liver and the protozoan parasite Trypanosoma brucei, for which a range of structures have previously been reported. Comparisons indicate that amino-acid sequence conservation is more pronounced in the two domains that contribute to the architecture of the active site, namely the N-terminal and C-terminal domains, compared with the central domain, which is primarily involved in the subunit-subunit associations required to form a stable dimer. The active-site residues are highly conserved, as are the interactions with the 6-phosphogluconate. There is interest in 6PDH as a potential drug target for the protozoan parasite T. brucei, the pathogen responsible for African sleeping sickness. The recombinant T. brucei enzyme has proven to be recalcitrant to enzyme-ligand studies and a surrogate protein might offer new opportunities to investigate and characterize 6PDH inhibitors. The high degree of structural similarity, efficient level of expression and straightforward crystallization conditions mean that Gs6PDH may prove to be an appropriate model system for structure-based inhibitor design targeting the enzyme from Trypanosoma species.


  • Organizational Affiliation

    University of Dundee, Scotland, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
6-PHOSPHOGLUCONATE DEHYDROGENASE, DECARBOXYLATING
A, B
470Geobacillus stearothermophilusMutation(s): 0 
EC: 1.1.1.44
UniProt
Find proteins for I3NI58 (Geobacillus stearothermophilus)
Explore I3NI58 
Go to UniProtKB:  I3NI58
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupI3NI58
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.185 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 67.035α = 90
b = 119.965β = 90
c = 142.827γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-04-07
    Type: Initial release
  • Version 1.1: 2012-05-16
    Changes: Derived calculations, Structure summary, Version format compliance
  • Version 1.2: 2019-10-16
    Changes: Data collection, Other
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Refinement description