2R30

Crystal Structure of human GITRL mutant


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.20 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.180 
  • R-Value Observed: 0.183 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Assembly and structural properties of glucocorticoid-induced TNF receptor ligand: Implications for function.

Chattopadhyay, K.Ramagopal, U.A.Mukhopadhaya, A.Malashkevich, V.N.Dilorenzo, T.P.Brenowitz, M.Nathenson, S.G.Almo, S.C.

(2007) Proc Natl Acad Sci U S A 104: 19452-19457

  • DOI: https://doi.org/10.1073/pnas.0709264104
  • Primary Citation of Related Structures:  
    2Q1M, 2R30, 2R32

  • PubMed Abstract: 

    Glucocorticoid-induced TNF receptor ligand (GITRL), a recently identified member of the TNF family, binds to its receptor GITR on both effector and regulatory T cells and generates positive costimulatory signals implicated in a wide range of T cell functions. Structural analysis reveals that the human GITRL (hGITRL) ectodomain self-assembles into an atypical expanded homotrimer with sparse monomer-monomer interfaces. Consistent with the small intersubunit interfaces, hGITRL exhibits a relatively weak tendency to trimerize in solution and displays a monomer-trimer equilibrium not reported for other TNF family members. This unique assembly behavior has direct implications for hGITRL-GITR signaling, because enforced trimerization of soluble hGITRL ectodomain results in an approximately 100-fold increase in its receptor binding affinity and also in enhanced costimulatory activity. The apparent reduction in affinity that is the consequence of this dynamic equilibrium may represent a mechanism to realize the biologically optimal level of signaling through the hGITRL-GITR pathway, as opposed to the maximal achievable level.


  • Organizational Affiliation

    Departments of Microbiology and Immunology, Cell Biology, Biochemistry, Physiology and Biophysics, Medicine (Division of Endocrinology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Tumor necrosis factor ligand superfamily member 18130Homo sapiensMutation(s): 1 
Gene Names: TNFSF18AITRLGITRLTL6
UniProt & NIH Common Fund Data Resources
Find proteins for Q9UNG2 (Homo sapiens)
Explore Q9UNG2 
Go to UniProtKB:  Q9UNG2
PHAROS:  Q9UNG2
GTEx:  ENSG00000120337 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9UNG2
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 3.20 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.180 
  • R-Value Observed: 0.183 
  • Space Group: P 63
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 72.21α = 90
b = 72.21β = 90
c = 52.937γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
MOLREPphasing
REFMACrefinement
PDB_EXTRACTdata extraction

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-11-13
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2017-10-25
    Changes: Refinement description
  • Version 1.3: 2021-10-20
    Changes: Database references
  • Version 1.4: 2023-08-30
    Changes: Data collection, Refinement description