2K4C

tRNAPhe-based homology model for tRNAVal refined against base N-H RDCs in two media and SAXS data


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 
  • Conformers Submitted: 
  • Selection Criteria: structures with the lowest energy 

  • Method: SOLUTION SCATTERING

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data.

Grishaev, A.Ying, J.Canny, M.D.Pardi, A.Bax, A.

(2008) J Biomol NMR 42: 99-109

  • DOI: https://doi.org/10.1007/s10858-008-9267-x
  • Primary Citation of Related Structures:  
    2K4C

  • PubMed Abstract: 

    A procedure is presented for refinement of a homology model of E. coli tRNA(Val), originally based on the X-ray structure of yeast tRNA(Phe), using experimental residual dipolar coupling (RDC) and small angle X-ray scattering (SAXS) data. A spherical sampling algorithm is described for refinement against SAXS data that does not require a globbic approximation, which is particularly important for nucleic acids where such approximations are less appropriate. Substantially higher speed of the algorithm also makes its application favorable for proteins. In addition to the SAXS data, the structure refinement employed a sparse set of NMR data consisting of 24 imino N-H(N) RDCs measured with Pf1 phage alignment, and 20 imino N-H(N) RDCs obtained from magnetic field dependent alignment of tRNA(Val). The refinement strategy aims to largely retain the local geometry of the 58% identical tRNA(Phe) by ensuring that the atomic coordinates for short, overlapping segments of the ribose-phosphate backbone and the conserved base pairs remain close to those of the starting model. Local coordinate restraints are enforced using the non-crystallographic symmetry (NCS) term in the XPLOR-NIH or CNS software package, while still permitting modest movements of adjacent segments. The RDCs mainly drive the relative orientation of the helical arms, whereas the SAXS restraints ensure an overall molecular shape compatible with experimental scattering data. The resulting structure exhibits good cross-validation statistics (jack-knifed Q (free) = 14% for the Pf1 RDCs, compared to 25% for the starting model) and exhibits a larger angle between the two helical arms than observed in the X-ray structure of tRNA(Phe), in agreement with previous NMR-based tRNA(Val) models.


  • Organizational Affiliation

    Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. AlexanderG@intra.niddk.nih.gov


Macromolecules
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains LengthOrganismImage
76-MER76Escherichia coli
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 
  • Conformers Submitted: 
  • Selection Criteria: structures with the lowest energy 
  • Method: SOLUTION SCATTERING

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-12-09
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2020-06-24
    Changes: Data collection, Database references, Derived calculations, Source and taxonomy