2F1S

Crystal Structure of a Viral FLIP MC159


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.236 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.206 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal Structure of a Viral FLIP: INSIGHTS INTO FLIP-MEDIATED INHIBITION OF DEATH RECEPTOR SIGNALING.

Li, F.-Y.Jeffrey, P.D.Yu, J.W.Shi, Y.

(2006) J Biol Chem 281: 2960-2968

  • DOI: https://doi.org/10.1074/jbc.M511074200
  • Primary Citation of Related Structures:  
    2F1S

  • PubMed Abstract: 

    Death receptor signaling is initiated by the assembly of the death-inducing signaling complex, which culminates in the activation of the initiator caspase, either caspase-8 or caspase-10. A family of viral and cellular proteins, known as FLIP, plays an essential role in the regulation of death receptor signaling. Viral FLIP (v-FLIP) and short cellular FLIP (c-FLIPS) inhibit apoptosis by interfering with death receptor signaling. The structure and mechanisms of v-FLIP and c-FLIPS remain largely unknown. Here we report a high resolution crystal structure of MC159, a v-FLIP derived from the molluscum contagiosum virus, which is a member of the human poxvirus family. Unexpectedly, the two tandem death effector domains (DEDs) of MC159 rigidly associate with each other through a hydrophobic interface. Structure-based sequence analysis suggests that this interface is conserved in the tandem DEDs from other v-FLIP, c-FLIPS, and caspase-8 and -10. Strikingly, the overall packing arrangement between the two DEDs of MC159 resembles that between the caspase recruitment domains of Apaf-1 and caspase-9. In addition, each DED of MC159 contains a highly conserved binding motif on the surface, to which loss-of-function mutations in MC159 map. These observations, in conjunction with published evidence, reveal significant insights into the function of v-FLIP and suggest a mechanism by which v-FLIP and c-FLIPS inhibit death receptor signaling.


  • Organizational Affiliation

    Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey 08544, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Viral CASP8 and FADD-like apoptosis regulator186Molluscum contagiosum virus subtype 1Mutation(s): 0 
UniProt
Find proteins for Q98325 (Molluscum contagiosum virus subtype 1)
Explore Q98325 
Go to UniProtKB:  Q98325
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ98325
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.40 Å
  • R-Value Free: 0.236 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.206 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 34.859α = 90
b = 63.271β = 90
c = 76.36γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
SCALEPACKdata scaling
SOLVEphasing
CNSrefinement
HKL-2000data reduction

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-11-29
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-14
    Changes: Data collection, Database references