25C8

CATALYTIC ANTIBODY 5C8, FAB-HAPTEN COMPLEX


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.292 
  • R-Value Work: 0.229 
  • R-Value Observed: 0.229 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Structural basis for antibody catalysis of a disfavored ring closure reaction.

Gruber, K.Zhou, B.Houk, K.N.Lerner, R.A.Shevlin, C.G.Wilson, I.A.

(1999) Biochemistry 38: 7062-7074

  • DOI: https://doi.org/10.1021/bi990210s
  • Primary Citation of Related Structures:  
    25C8, 35C8

  • PubMed Abstract: 

    The catalysis of disfavored chemical reactions, especially those with no known natural enzyme counterparts, is one of the most promising achievements of catalytic antibody research. Antibodies 5C8, 14B9, 17F6, and 26D9, elicited by two different transition-state analogues, catalyze disfavored endo-tet cyclization reactions of trans-epoxy alcohols, in formal violation of Baldwin's rules for ring closure. Thus far, neither chemical nor enzyme catalysis has been capable of emulating the extraordinary activity and specificity of these antibodies. X-ray structures of two complexes of Fab 5C8 with the original hapten and with an inhibitor have been determined to 2.0 A resolution. The Fab structure has an active site that contains a putative catalytic diad, consisting of AspH95 and HisL89, capable of general acid/base catalysis. The stabilization of a positive charge that develops along the reaction coordinate appears to be an important factor for rate enhancement and for directing the reaction along the otherwise disfavored pathway. Sequence analysis of the four catalytic antibodies, as well as four inactive antibodies that strongly bind the transition-state analogues, suggests a conserved catalytic mechanism. The occurrence of the putative base HisL89 in all active antibodies, its absence in three out of the four analyzed inactive antibodies, and the rarity of a histidine at this position in immunoglobulins support an important catalytic role for this residue.


  • Organizational Affiliation

    Department of Molecular Biology and Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
IGG 5C8A [auth L]212Mus musculusMutation(s): 0 
UniProt
Find proteins for P01837 (Mus musculus)
Explore P01837 
Go to UniProtKB:  P01837
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01837
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
IGG 5C8B [auth H]217Mus musculusMutation(s): 0 
UniProt
Find proteins for P01869 (Mus musculus)
Explore P01869 
Go to UniProtKB:  P01869
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP01869
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
GEP
Query on GEP

Download Ideal Coordinates CCD File 
C [auth L]N-METHYL-N-(PARA-GLUTARAMIDOPHENYL-ETHYL)-PIPERIDINIUM ION
C19 H29 N2 O3
OKJUVEGXNINONS-UHFFFAOYSA-O
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.292 
  • R-Value Work: 0.229 
  • R-Value Observed: 0.229 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 112α = 90
b = 80β = 118
c = 64.9γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing
X-PLORrefinement

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-03-23
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-04-03
    Changes: Data collection, Database references, Derived calculations, Refinement description