1Y3T

Crystal structure of YxaG, a dioxygenase from Bacillus subtilis


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.277 
  • R-Value Work: 0.217 
  • R-Value Observed: 0.220 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

The Crystal Structure of a Quercetin 2,3-Dioxygenase from Bacillus subtilis Suggests Modulation of Enzyme Activity by a Change in the Metal Ion at the Active Site(s)

Gopal, B.Madan, L.L.Betz, S.F.Kossiakoff, A.A.

(2005) Biochemistry 44: 193-201

  • DOI: https://doi.org/10.1021/bi0484421
  • Primary Citation of Related Structures:  
    1Y3T

  • PubMed Abstract: 

    Common structural motifs, such as the cupin domains, are found in enzymes performing different biochemical functions while retaining a similar active site configuration and structural scaffold. The soil bacterium Bacillus subtilis has 20 cupin genes (0.5% of the total genome) with up to 14% of its genes in the form of doublets, thus making it an attractive system for studying the effects of gene duplication. There are four bicupins in B. subtilis encoded by the genes yvrK, yoaN, yxaG, and ywfC. The gene products of yvrK and yoaN function as oxalate decarboxylases with a manganese ion at the active site(s), whereas YwfC is a bacitracin synthetase. Here we present the crystal structure of YxaG, a novel iron-containing quercetin 2,3-dioxygenase with one active site in each cupin domain. Yxag is a dimer, both in solution and in the crystal. The crystal structure shows that the coordination geometry of the Fe ion is different in the two active sites of YxaG. Replacement of the iron at the active site with other metal ions suggests modulation of enzymatic activity in accordance with the Irving-Williams observation on the stability of metal ion complexes. This observation, along with a comparison with the crystal structure of YvrK determined recently, has allowed for a detailed structure-function analysis of the active site, providing clues to the diversification of function in the bicupin family of proteins.


  • Organizational Affiliation

    Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Hypothetical protein yxaG
A, B
337Bacillus subtilisMutation(s): 0 
Gene Names: yxaG
UniProt
Find proteins for P42106 (Bacillus subtilis (strain 168))
Explore P42106 
Go to UniProtKB:  P42106
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP42106
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.277 
  • R-Value Work: 0.217 
  • R-Value Observed: 0.220 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 128.417α = 90
b = 128.425β = 90
c = 51.189γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data reduction
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-01-18
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-23
    Changes: Data collection, Database references, Derived calculations, Refinement description