1WAQ

Crystal structure of human Growth and Differentiation Factor 5 (GDF-5)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.28 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.222 
  • R-Value Observed: 0.223 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

A Single Residue of Gdf-5 Defines Binding Specificity to Bmp Receptor Ib.

Nickel, J.Kotzsch, A.Sebald, W.Mueller, T.D.

(2005) J Mol Biol 349: 933

  • DOI: https://doi.org/10.1016/j.jmb.2005.04.015
  • Primary Citation of Related Structures:  
    1WAQ

  • PubMed Abstract: 

    Growth and differentiation factor 5 (GDF-5), a member of the TGF-beta superfamily, is involved in many developmental processes, like chondrogenesis and joint formation. Mutations in GDF-5 lead to diseases, e.g. chondrodysplasias like Hunter-Thompson, Grebe and DuPan syndromes and brachydactyly. Similar to other TGF-beta superfamily members, GDF-5 transmits signals through binding to two different types of membrane-bound serine-/threonine-kinase receptors termed type I and type II. In contrast to the large number of ligands, only seven type I and five type II receptors have been identified to date, implicating a limited promiscuity in ligand-receptor interaction. However, in contrast to other members of the TGF-beta superfamily, GDF-5 shows a pronounced specificity in type I receptor interaction in cross-link experiments binding only to BMP receptor IB (BMPR-IB). In mice, deletion of either GDF-5 or BMPR-IB results in a similar phenotype, indicating that GDF-5 signaling is highly dependent on BMPR-IB. Here, we demonstrate by biosensor analysis that GDF-5 also binds to BMP receptor IA (BMPR-IA) but with approximately 12-fold lower affinity. Structural and mutational analyses revealed a single residue of GDF-5, Arg57 located in the pre-helix loop, being solely responsible for the high binding specificity to BMPR-IB. In contrast to wild-type GDF-5, variant GDF-5R57A interacts with BMPR-IA and BMPR-IB with a comparable high binding affinity. These results provide important insights into how receptor-binding specificity is generated at the molecular level and might be useful for the generation of receptor subtype specific activators or inhibitors.


  • Organizational Affiliation

    Lehrstuhl für Physiologische Chemie II, Theodor-Boveri Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GROWTH/DIFFERENTIATION FACTOR 5117Homo sapiensMutation(s): 0 
UniProt & NIH Common Fund Data Resources
Find proteins for P43026 (Homo sapiens)
Explore P43026 
Go to UniProtKB:  P43026
PHAROS:  P43026
GTEx:  ENSG00000125965 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP43026
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.28 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.222 
  • R-Value Observed: 0.223 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 97.771α = 90
b = 97.771β = 90
c = 43.325γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-05-19
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Advisory, Version format compliance
  • Version 1.2: 2023-12-13
    Changes: Data collection, Database references, Other, Refinement description