1UWM

reduced ferredoxin 6 from Rhodobacter capsulatus


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.230 
  • R-Value Observed: 0.230 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Structure of a [2Fe-2S] Ferredoxin from Rhodobacter Capsulatus Likely Involved in Fe-S Cluster Biogenesis and Conformational Changes Observed Upon Reduction.

Sainz, G.Jakoncic, J.Sieker, L.C.Stojanoff, V.Sanishvili, N.Asso, M.Bertrand, P.Armengaud, J.Jouanneau, Y.

(2006) J Biol Inorg Chem 11: 235

  • DOI: https://doi.org/10.1007/s00775-005-0069-2
  • Primary Citation of Related Structures:  
    1UWM

  • PubMed Abstract: 

    FdVI from Rhodobacter capsulatus is structurally related to a group of [2Fe-2S] ferredoxins involved in iron-sulfur cluster biosynthesis. Comparative genomics suggested that FdVI and orthologs found in alpha-Proteobacteria are involved in this process. Here, the crystal structure of FdVI has been determined for both the oxidized and the reduced protein. The [2Fe-2S] cluster lies 6 A below the protein surface in a hydrophobic pocket without access to the solvent. This particular cluster environment might explain why the FdVI midpoint redox potential (-306 mV at pH 8.0) did not show temperature or ionic strength dependence. Besides the four cysteines that bind the cluster, FdVI features an extra cysteine which is located close to the S1 atom of the cluster and is oriented in a position such that its thiol group points towards the solvent. Upon reduction, the general fold of the polypeptide chain was almost unchanged. The [2Fe-2S] cluster underwent a conformational change from a planar to a distorted lozenge. In the vicinity of the cluster, the side chain of Met24 was rotated by 180 degrees , bringing its S atom within hydrogen-bonding distance of the S2 atom of the cluster. The reduced molecule also featured a higher content of bound water molecules, and more extensive hydrogen-bonding networks compared with the oxidized molecule. The unique conformational changes observed in FdVI upon reduction are discussed in the light of structural studies performed on related ferredoxins.


  • Organizational Affiliation

    European Synchrotron Radiation Facility, BP 220, 38054 Grenoble Cedex 9, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
FERREDOXIN VI106Rhodobacter capsulatusMutation(s): 0 
UniProt
Find proteins for P80306 (Rhodobacter capsulatus)
Explore P80306 
Go to UniProtKB:  P80306
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP80306
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FES
Query on FES

Download Ideal Coordinates CCD File 
B [auth A]FE2/S2 (INORGANIC) CLUSTER
Fe2 S2
NIXDOXVAJZFRNF-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.257 
  • R-Value Work: 0.230 
  • R-Value Observed: 0.230 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 45.542α = 90
b = 50.335β = 90
c = 55.349γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-01-18
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2019-05-15
    Changes: Data collection, Experimental preparation, Other
  • Version 1.4: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Refinement description