1UMX

PHOTOSYNTHETIC REACTION CENTER MUTANT WITH ARG M267 REPLACED WITH LEU (CHAIN M, R267L)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.224 
  • R-Value Observed: 0.225 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Disruption of a specific molecular interaction with a bound lipid affects the thermal stability of the purple bacterial reaction centre.

Fyfe, P.K.Isaacs, N.W.Cogdell, R.J.Jones, M.R.

(2004) Biochim Biophys Acta 1608: 11-22

  • DOI: https://doi.org/10.1016/j.bbabio.2003.09.014
  • Primary Citation of Related Structures:  
    1UMX

  • PubMed Abstract: 

    Relatively little is known about the functions of specific molecular interactions between membrane proteins and membrane lipids. The structural and functional consequences of disrupting a previously identified interaction between a molecule of the diacidic lipid cardiolipin and the purple bacterial reaction centre were examined. Mutagenesis of a highly conserved arginine (M267) that is responsible for binding the head-group of the cardiolipin (to leucine) did not affect the rate of photosynthetic growth, the functional properties of the reaction centre, or the X-ray crystal structure of the complex (determined to a resolution of 2.8 A). However, the thermal stability of the protein was compromised by this mutation, part of the reaction centre population showing an approximately 5 degrees C decrease in melting temperature in response to the arginine to leucine mutation. The crystallised mutant reaction centre also no longer bound detectable amounts of cardiolipin at this site. Taken together, these observations suggest that this particular protein-lipid interaction contributes to the thermal stability of the complex, at least when in detergent micelles. These findings are discussed in the light of proposals concerning the unfolding processes that occur when membrane proteins are heated, and we propose that one function of the cardiolipin is to stabilise the interaction between adjacent membrane-spanning alpha-helices in a region where there are no direct protein-protein interactions.


  • Organizational Affiliation

    Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
REACTION CENTER PROTEIN H CHAINA [auth H]260Cereibacter sphaeroidesMutation(s): 0 
Membrane Entity: Yes 
UniProt
Find proteins for P0C0Y7 (Cereibacter sphaeroides)
Explore P0C0Y7 
Go to UniProtKB:  P0C0Y7
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0C0Y7
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
REACTION CENTER PROTEIN L CHAINB [auth L]281Cereibacter sphaeroidesMutation(s): 0 
Membrane Entity: Yes 
UniProt
Find proteins for P0C0Y8 (Cereibacter sphaeroides)
Explore P0C0Y8 
Go to UniProtKB:  P0C0Y8
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0C0Y8
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
REACTION CENTER PROTEIN M CHAINC [auth M]307Cereibacter sphaeroidesMutation(s): 1 
Membrane Entity: Yes 
UniProt
Find proteins for P0C0Y9 (Cereibacter sphaeroides)
Explore P0C0Y9 
Go to UniProtKB:  P0C0Y9
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0C0Y9
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 7 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
BCL
Query on BCL

Download Ideal Coordinates CCD File 
E [auth L],
F [auth L],
H [auth M],
I [auth M]
BACTERIOCHLOROPHYLL A
C55 H74 Mg N4 O6
DSJXIQQMORJERS-AGGZHOMASA-M
BPB
Query on BPB

Download Ideal Coordinates CCD File 
G [auth L],
L [auth M]
BACTERIOPHEOPHYTIN B
C55 H74 N4 O6
SFKCKJXMIAKQMY-GTTFDWDMSA-N
U10
Query on U10

Download Ideal Coordinates CCD File 
N [auth M]UBIQUINONE-10
C59 H90 O4
ACTIUHUUMQJHFO-UPTCCGCDSA-N
SPN
Query on SPN

Download Ideal Coordinates CCD File 
M
SPEROIDENONE
C41 H70 O2
GWQAMGYOEYXWJF-YCDPMLDASA-N
LDA
Query on LDA

Download Ideal Coordinates CCD File 
D [auth H],
J [auth M]
LAURYL DIMETHYLAMINE-N-OXIDE
C14 H31 N O
SYELZBGXAIXKHU-UHFFFAOYSA-N
PO4
Query on PO4

Download Ideal Coordinates CCD File 
O [auth M]PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
FE
Query on FE

Download Ideal Coordinates CCD File 
K [auth M]FE (III) ION
Fe
VTLYFUHAOXGGBS-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.249 
  • R-Value Work: 0.224 
  • R-Value Observed: 0.225 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 141.638α = 90
b = 141.638β = 90
c = 187.394γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-06-29
    Type: Initial release
  • Version 1.1: 2012-02-01
    Changes: Derived calculations, Non-polymer description, Other, Version format compliance
  • Version 1.2: 2019-10-09
    Changes: Advisory, Data collection, Database references