1U8F

Crystal Structure Of Human Placental Glyceraldehyde-3-Phosphate Dehydrogenase At 1.75 Resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.191 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

High-resolution structure of human D-glyceraldehyde-3-phosphate dehydrogenase.

Jenkins, J.L.Tanner, J.J.

(2006) Acta Crystallogr D Biol Crystallogr 62: 290-301

  • DOI: https://doi.org/10.1107/S0907444905042289
  • Primary Citation of Related Structures:  
    1U8F

  • PubMed Abstract: 

    GAPDH (D-glyceraldehyde-3-phosphate dehydrogenase) is a multifunctional protein that is a target for the design of antitrypanosomatid and anti-apoptosis drugs. Here, the first high-resolution (1.75 Angstroms) structure of a human GAPDH is reported. The structure shows that the intersubunit selectivity cleft that has been leveraged in the design of antitrypanosomatid compounds is closed in human GAPDH. Modeling of an anti-trypanosomatid GAPDH inhibitor in the human GAPDH active site provides insights into the basis for the observed selectivity of this class of inhibitor. Moreover, the high-resolution data reveal a new feature of the cleft: water-mediated intersubunit hydrogen bonds that assist closure of the cleft in the human enzyme. The structure is used in a computational ligand-docking study of the small-molecule compound CGP-3466, which inhibits apoptosis by preventing nuclear accumulation of GAPDH. Plausible binding sites are identified in the adenosine pocket of the NAD(+)-binding site and in a hydrophobic channel located in the center of the tetramer near the intersection of the three molecular twofold axes. The structure is also used to build a qualitative model of the complex between GAPDH and the E3 ubiquitin ligase Siah1. The model suggests that the convex surface near GAPDH Lys227 interacts with a large shallow groove of the Siah1 dimer. These results are discussed in the context of the recently discovered NO-S-nitrosylation-GAPDH-Siah1 apoptosis cascade.


  • Organizational Affiliation

    Department of Chemistry, University of Missouri-Columbia, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Glyceraldehyde-3-phosphate dehydrogenase, liverA [auth O],
B [auth P],
C [auth Q],
D [auth R]
335Homo sapiensMutation(s): 0 
Gene Names: GAPD
EC: 1.2.1.12
UniProt & NIH Common Fund Data Resources
Find proteins for P04406 (Homo sapiens)
Explore P04406 
Go to UniProtKB:  P04406
PHAROS:  P04406
GTEx:  ENSG00000111640 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP04406
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.75 Å
  • R-Value Free: 0.217 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.191 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 84.953α = 90
b = 125.651β = 90
c = 132.329γ = 90
Software Package:
Software NamePurpose
CNSrefinement
HKL-2000data reduction
HKL-2000data scaling
AMoREphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-08-16
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-02-14
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-04-03
    Changes: Refinement description