1S3P

Crystal structure of rat alpha-parvalbumin S55D/E59D mutant


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.181 
  • R-Value Observed: 0.181 

wwPDB Validation   3D Report Full Report


This is version 1.5 of the entry. See complete history


Literature

Crystal Structure of a High-Affinity Variant of Rat alpha-Parvalbumin.

Lee, Y.H.Tanner, J.J.Larson, J.D.Henzl, M.T.

(2004) Biochemistry 43: 10008-10017

  • DOI: https://doi.org/10.1021/bi0492915
  • Primary Citation of Related Structures:  
    1S3P

  • PubMed Abstract: 

    In model peptide systems, Ca2+ affinity is maximized in EF-hand motifs containing four carboxylates positioned on the +x and -x and +z and -z axes; introduction of a fifth carboxylate ligand reduces the affinity. However, in rat beta-parvalbumin, replacement of Ser-55 with aspartate heightens divalent ion affinity [Henzl, M. T., et al. (1996) Biochemistry 35, 5856-5869]. The corresponding alpha-parvalbumin variant (S55D/E59D) likewise exhibits elevated affinity [Henzl, M. T., et al. (2003) Anal. Biochem. 319, 216-233]. To determine whether these mutations produce a variation on the archetypal EF-hand coordination scheme, we have obtained high-resolution X-ray crystallographic data for alpha S55D/E59D. As anticipated, the aspartyl carboxylate replaces the serine hydroxyl at the +z coordination position. Interestingly, the Asp-59 carboxylate abandons the role it plays as an outer sphere ligand in wild-type rat beta, rotating away from the Ca2+ and, instead, forming a hydrogen bond with the amide of Glu-62. Superficially, the coordination sphere in the CD site of alpha S55D/E59D resembles that in the EF site. However, the orientation of the Asp-59 side chain is predicted to stabilize the D-helix, which may contribute to the heightened divalent ion affinity. DSC data indicate that the alpha S55D/E59D variant retains the capacity to bind 1 equiv of Na+. Consistent with this finding, when binding measurements are conducted in K(+)-containing buffer, divalent ion affinity is markedly higher. In 0.15 M KCl and 0.025 M Hepes-KOH (pH 7.4) at 5 degrees C, the macroscopic Ca2+ binding constants are 1.8 x 10(10) and 2.0 x 10(9) M(-1). The corresponding Mg2+ binding constants are 2.7 x 10(6) and 1.2 x 10(5) M(-1).


  • Organizational Affiliation

    Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Parvalbumin alpha109Rattus norvegicusMutation(s): 2 
Gene Names: PVALBPVA
UniProt
Find proteins for P02625 (Rattus norvegicus)
Explore P02625 
Go to UniProtKB:  P02625
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP02625
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.221 
  • R-Value Work: 0.181 
  • R-Value Observed: 0.181 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 61.47α = 90
b = 51.57β = 90
c = 30.75γ = 90
Software Package:
Software NamePurpose
CNSrefinement
SCALEPACKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-09-07
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-10-11
    Changes: Refinement description
  • Version 1.4: 2021-10-27
    Changes: Database references, Derived calculations
  • Version 1.5: 2023-08-23
    Changes: Data collection, Refinement description