1RDY

T-STATE STRUCTURE OF THE ARG 243 TO ALA MUTANT OF PIG KIDNEY FRUCTOSE 1,6-BISPHOSPHATASE EXPRESSED IN E. COLI


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.198 
  • R-Value Observed: 0.198 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Crystal structures of the active site mutant (Arg-243-->Ala) in the T and R allosteric states of pig kidney fructose-1,6-bisphosphatase expressed in Escherichia coli.

Stec, B.Abraham, R.Giroux, E.Kantrowitz, E.R.

(1996) Protein Sci 5: 1541-1553

  • DOI: https://doi.org/10.1002/pro.5560050810
  • Primary Citation of Related Structures:  
    1RDX, 1RDY, 1RDZ

  • PubMed Abstract: 

    The active site of pig kidney fructose-1,6-bisphosphatase (EC 3.1.3.11) is shared between subunits, Arg-243 of one chain interacting with fructose-1,6-bisphosphate or fructose-2,6-bisphosphate in the active site of an adjacent chain. In this study, we present the X-ray structures of the mutant version of the enzyme with Arg-243 replaced by alanine, crystallized in both T and R allosteric states. Kinetic characteristics of the altered enzyme showed the magnesium binding and inhibition by AMP differed slightly; affinity for the substrate fructose-1,6-bisphosphate was reduced 10-fold and affinity for the inhibitor fructose-2,6-bisphosphate was reduced 1,000-fold (Giroux E, Williams MK, Kantrowitz ER, 1994, J Biol Chem 269:31404-31409). The X-ray structures show no major changes in the organization of the active site compared with wild-type enzyme, and the structures confirm predictions of molecular dynamics simulations involving Lys-269 and Lys-274. Comparison of two independent models of the T form structures have revealed small but significant changes in the conformation of the bound AMP molecules and small reorganization of the active site correlated with the presence of the inhibitor. The differences in kinetic properties of the mutant enzyme indicate the key importance of Arg-243 in the function of fructose-1,6-bisphosphatase. Calculations using the X-ray structures of the Arg-243-->Ala enzyme suggest that the role of Arg-243 in the wild-type enzyme is predominantly electrostatic in nature.


  • Organizational Affiliation

    Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
FRUCTOSE 1,6-BISPHOSPHATASE
A, B
337Sus scrofaMutation(s): 1 
Gene Names: CDNA
EC: 3.1.3.11
UniProt
Find proteins for P00636 (Sus scrofa)
Explore P00636 
Go to UniProtKB:  P00636
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00636
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
AMP
Query on AMP

Download Ideal Coordinates CCD File 
D [auth A],
F [auth B]
ADENOSINE MONOPHOSPHATE
C10 H14 N5 O7 P
UDMBCSSLTHHNCD-KQYNXXCUSA-N
F6P
Query on F6P

Download Ideal Coordinates CCD File 
C [auth A],
E [auth B]
6-O-phosphono-beta-D-fructofuranose
C6 H13 O9 P
BGWGXPAPYGQALX-ARQDHWQXSA-N
Binding Affinity Annotations 
IDSourceBinding Affinity
AMP BindingDB:  1RDY IC50: min: 140, max: 9800 (nM) from 10 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.234 
  • R-Value Work: 0.198 
  • R-Value Observed: 0.198 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 61.2α = 90
b = 166.75β = 90
c = 79.84γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
SDMSdata reduction
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1997-01-11
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Derived calculations, Version format compliance
  • Version 1.3: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Database references, Derived calculations, Other, Structure summary
  • Version 1.4: 2021-11-03
    Changes: Database references, Structure summary