1QUE

X-RAY STRUCTURE OF THE FERREDOXIN:NADP+ REDUCTASE FROM THE CYANOBACTERIUM ANABAENA PCC 7119 AT 1.8 ANGSTROMS


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.214 
  • R-Value Work: 0.172 
  • R-Value Observed: 0.172 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and crystallographic studies of NADP+ binding at 2.25 A resolution.

Serre, L.Vellieux, F.M.Medina, M.Gomez-Moreno, C.Fontecilla-Camps, J.C.Frey, M.

(1996) J Mol Biol 263: 20-39

  • DOI: https://doi.org/10.1006/jmbi.1996.0553
  • Primary Citation of Related Structures:  
    1QUE, 1QUF

  • PubMed Abstract: 

    The crystal structure of the ferredoxin:NADP+ reductase (FNR) from the cyanobacterium Anabaena PCC 7119 has been determined at 2.6 A resolution by multiple isomorphous replacement and refined using 15.0 A to 1.8 A data, collected at 4 degrees C, to an R-factor of 0.172. The model includes 303 residues, the flavin adenine dinucleotide cofactor (FAD), one sulfate ion located at the putative NADP+ binding site and 328 water molecule sites. The structure of Anabaena FNR, including FAD, a network of intrinsic water molecules and a large hydrophobic cavity in the C-terminal domain, resembles that of the spinach enzyme. The major differences concern the additional short alpha-helix (residues 172 to 177 in Anabaena FNR) and residues Arg 100 and Arg 233 which binds NADP+ instead of Lys 116 and Lys 244 in the spinach enzyme. Crystals of a complex of Anabaena FNR with NADP+ were obtained. The model of the complex has been refined using 15 A to 2.25 A X-ray data, collected at -170 degrees C, to an R-factor of 0.186. This model includes 295 residues, FAD, the full NADP+ (with an occupancy of 0.8) and 444 water molecules. The 2'-5' adenine moiety of NADP+ binds to the protein as 2'-phospho-5'-AMP to the spinach FNR. The nicotinamide moiety is turned towards the surface of the protein instead of stacking onto the FAD isoalloxazine ring as would be required for hydride transfer. The model of the complex agrees with previous biochemical studies as residues Arg 100 and Arg 233 are involved in NADP+ binding and residues Arg77, Lys 53 and Lys 294, located on the FAD side of the enzyme, remain free to interact with ferredoxin and flavodoxin, the physiological partners of ferredoxin: NADP reductase.


  • Organizational Affiliation

    IBS/LCCP, Grenoble, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
FERREDOXIN--NADP+ REDUCTASE303Nostoc sp. PCC 7119Mutation(s): 0 
EC: 1.18.1.2
UniProt
Find proteins for P21890 (Nostoc sp. (strain ATCC 29151 / PCC 7119))
Explore P21890 
Go to UniProtKB:  P21890
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP21890
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
FAD
Query on FAD

Download Ideal Coordinates CCD File 
C [auth A]FLAVIN-ADENINE DINUCLEOTIDE
C27 H33 N9 O15 P2
VWWQXMAJTJZDQX-UYBVJOGSSA-N
SO4
Query on SO4

Download Ideal Coordinates CCD File 
B [auth A]SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.214 
  • R-Value Work: 0.172 
  • R-Value Observed: 0.172 
  • Space Group: P 65
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 88.2α = 90
b = 88.2β = 90
c = 97.1γ = 120
Software Package:
Software NamePurpose
PHASEmodel building
X-PLORmodel building
X-PLORrefinement
XDSdata reduction
CCP4data scaling
ROTAVATAdata scaling
BIOMOLdata scaling
PHASESphasing
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1997-05-15
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 1.3: 2024-02-14
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description