1PYC

CYP1 (HAP1) DNA-BINDING DOMAIN (RESIDUES 60-100), NMR, 15 STRUCTURES


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Submitted: 15 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

1H, 15N resonance assignment and three-dimensional structure of CYP1 (HAP1) DNA-binding domain.

Timmerman, J.Vuidepot, A.L.Bontems, F.Lallemand, J.Y.Gervais, M.Shechter, E.Guiard, B.

(1996) J Mol Biol 259: 792-804

  • DOI: https://doi.org/10.1006/jmbi.1996.0358
  • Primary Citation of Related Structures:  
    1PYC

  • PubMed Abstract: 

    CYP1(HAP1) is a transcriptional activator involved in the aerobic metabolism of the yeast Saccharomyces cerevisiae. The amino acid sequence of its DNA-binding domain suggests that it belongs to the "zinc cluster" class. This region is indeed characterized by a pattern known to form a bimetal thiolate cluster where two zinc ions are coordinated by six cysteine residues. Structures of two such domains, those from GAL4 and PPR1, have been solved as complexes with DNA. These domains consist of the zinc cluster connected to a dimerization helix by a linker peptide. They recognize, as a dimer, an inverted repeat of a CGG motif that is separated by a specific number of bases. Interestingly, the specificity of that interaction seems not to be due to the interaction between the cluster region and the DNA but rather to a fine tune between the structure of the linker peptide and the number of base-pairs separating the two CGGs. However, the CYP1 target sites fail to display such a consensus sequence. One of the two CGG sites is poorly conserved and some experiments suggest a direct rather than an inverted repeat. Using 1H, 15N and 113Cd NMR spectroscopy, we have undertaken the analysis of the structural properties of the CYP1(56-126) fragment that consists of the zinc-cluster region, the linker peptide and a part of the dimerization helix. We have demonstrated that the six cysteine residues of the peptide chelate two cadmium ions as in GAL4 and PPR1. Fifteen structures of the zinc-cluster region (residues 60 to 100) were calculated, the linker peptide and the dimerization helix being unstructured under the conditions of our study. This region possesses the same overall fold as in GAL4 and PPR1, and most of the side-chains involved in the interaction with DNA are structurally conserved. This suggests that the CYP1 zinc-cluster region recognizes a CGG triplet in the same way as GAL4 and PPR1. In this case, the particular properties of CYP1 seem to be due to the structure of the linker peptide and/or of the dimerization helix.


  • Organizational Affiliation

    Groupe de RMN-Département de Chimie, Synthèse Organique, Palaiseau, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CYP171Saccharomyces cerevisiaeMutation(s): 0 
UniProt
Find proteins for P0CS82 (Saccharomyces cerevisiae)
Explore P0CS82 
Go to UniProtKB:  P0CS82
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0CS82
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download Ideal Coordinates CCD File 
B [auth A],
C [auth A]
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Submitted: 15 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1996-08-01
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-03-02
    Changes: Database references, Derived calculations, Other