1NQN

Structure of Avm-W110K (W110K mutant of avidin)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.205 
  • R-Value Observed: 0.206 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Dimer-Tetramer Transition between Solution and Crystalline States of Streptavidin and Avidin Mutants.

Pazy, Y.Eisenberg-Domovich, Y.Laitinen, O.H.Kulomaa, M.S.Bayer, E.A.Wilchek, M.Livnah, O.

(2003) J Bacteriol 185: 4050-4056

  • DOI: https://doi.org/10.1128/JB.185.14.4050-4056.2003
  • Primary Citation of Related Structures:  
    1NQM, 1NQN

  • PubMed Abstract: 

    The biotin-binding tetrameric proteins, streptavidin from Streptomyces avidinii and chicken egg white avidin, are excellent models for the study of subunit-subunit interactions of a multimeric protein. Efforts are thus being made to prepare mutated forms of streptavidin and avidin, which would form monomers or dimers, in order to examine their effect on quaternary structure and assembly. In the present communication, we compared the crystal structures of binding site W-->K mutations in streptavidin and avidin. In solution, both mutant proteins are known to form dimers, but upon crystallization, both formed tetramers with the same parameters as the native proteins. All of the intersubunit bonds were conserved, except for the hydrophobic interaction between biotin and the tryptophan that was replaced by lysine. In the crystal structure, the binding site of the mutated apo-avidin contains 3 molecules of structured water instead of the 5 contained in the native protein. The lysine side chain extends in a direction opposite that of the native tryptophan, the void being partially filled by an adjacent lysine residue. Nevertheless, the binding-site conformation observed for the mutant tetramer is an artificial consequence of crystal packing that would not be maintained in the solution-phase dimer. It appears that the dimer-tetramer transition may be concentration dependent, and the interaction among subunits obeys the law of mass action.


  • Organizational Affiliation

    Department of Biological Chemistry, The Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Avidin
A, B
122Gallus gallusMutation(s): 1 
Gene Names: AVD
UniProt
Find proteins for P02701 (Gallus gallus)
Explore P02701 
Go to UniProtKB:  P02701
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP02701
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.205 
  • R-Value Observed: 0.206 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 67.703α = 90
b = 77.45β = 90
c = 42.894γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing
CNSrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-07-15
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2018-01-31
    Changes: Experimental preparation
  • Version 1.4: 2021-10-27
    Changes: Advisory, Database references