1MM6

crystal structure of the GluR2 ligand binding core (S1S2J) in complex with quisqualate in a non zinc crystal form at 2.15 angstroms resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.190 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Mechanism of activation and selectivity in a ligand-gated ion channel: Structural and functional studies of GluR2 and quisqualate

Jin, R.Horning, M.Mayer, M.L.Gouaux, E.

(2002) Biochemistry 41: 15635-15643

  • DOI: https://doi.org/10.1021/bi020583k
  • Primary Citation of Related Structures:  
    1MM6, 1MM7

  • PubMed Abstract: 

    Glutamate is the major excitatory neurotransmitter in the mammalian brain. The (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazole)propionic acid (AMPA)-subtype glutamate receptor, a ligand-gated ion channel, mediates most of the fast excitatory synaptic transmission in the mammalian central nervous system. Here we present electrophysiological, biochemical, and crystallographic data on the interactions between quisqualate and the GluR2 receptor ion channel and its corresponding ligand binding core. Quisqualate is a high-affinity, full agonist which like AMPA and glutamate elicits maximum peak current responses, and stabilizes the ligand binding core in a fully closed conformation, reinforcing the concept that full agonists produce similar conformational changes [Armstrong, N., and Gouaux, E. (2000) Neuron 28, 165-181]. Nevertheless, the mechanism of quisqualate binding is different from that of AMPA but similar to that of glutamate, illustrating that quisqualate is a faithful glutamate analogue. A detailed comparison of the three agonist complexes reveals distinct binding mechanisms, particularly in the region of a hydrophobic pocket that is proximal to the anionic gamma-substituents, and demonstrates the importance of agonist-water-receptor interactions. The hydrophobic pocket, which is predicted to vary in chemical character between receptor subtypes, probably plays an important role in determining receptor subtype specificity.


  • Organizational Affiliation

    Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GLUTAMATE RECEPTOR 2
A, B
263Rattus norvegicusMutation(s): 0 
Gene Names: GluR-2 or GluR-B
UniProt
Find proteins for P19491 (Rattus norvegicus)
Explore P19491 
Go to UniProtKB:  P19491
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP19491
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
QUS BindingDB:  1MM6 Ki: 1.00e+4 (nM) from 1 assay(s)
PDBBind:  1MM6 IC50: 20 (nM) from 1 assay(s)
Binding MOAD:  1MM6 IC50: 20 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.190 
  • R-Value Observed: 0.190 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 98.56α = 90
b = 121.53β = 90
c = 47.451γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing
CNSrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-02-04
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2017-08-23
    Changes: Refinement description, Source and taxonomy