1HSL

REFINED 1.89 ANGSTROMS STRUCTURE OF THE HISTIDINE-BINDING PROTEIN COMPLEXED WITH HISTIDINE AND ITS RELATIONSHIP WITH MANY OTHER ACTIVE TRANSPORT(SLASH)CHEMOSENSORY RECEPTORS


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.89 Å
  • R-Value Work: 0.199 
  • R-Value Observed: 0.199 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Refined 1.89-A structure of the histidine-binding protein complexed with histidine and its relationship with many other active transport/chemosensory proteins.

Yao, N.Trakhanov, S.Quiocho, F.A.

(1994) Biochemistry 33: 4769-4779

  • DOI: https://doi.org/10.1021/bi00182a004
  • Primary Citation of Related Structures:  
    1HSL

  • PubMed Abstract: 

    The structure of the histidine-binding protein (HBP, M(r) = 26,100), involved solely in active transport, has been determined by the molecular replacement technique and refined to 1.89-A resolution and to an R-factor of 0.199. The structure is that of two protein molecules, each with a bound L-histidine, in the asymmetric unit. Replacement solution was achieved by using a model of the crystal structure of the ligand-free, open-cleft form of the lysine/arginine/ornithine-binding protein which was modified so that the two domains are close to each other by bending the hinge connecting the two domains. The bound histidine is held in place by 10 hydrogen bonds, 2 salt links, and about 60 van der Waals contacts. Elucidation of the HBP structure brings a total of eight different binding proteins structures determined in our laboratory, including those with specificities for monosaccharides, maltodextrins (linear and cyclic), aliphatic amino acids, and inorganic oxyanions. These structures comprise about a third of the entire family of periplasmic binding proteins which act as initial primary high-affinity receptors of active transport in Gram-negative bacteria. Two of the binding proteins with specificities for glucose/galactose and maltodextrins also serve in a similar capacity in chemotaxis. Though these proteins have different molecular weights (ranging from 26,000 to 40,000), amino acid sequences, and ligand specificities, their three-dimensional structures are similar overall. They are elongated (axial ratios of 2:1) and composed of two similar globular domains separated by a deep cleft wherein the ligand-binding site is located. These structures provide understanding of molecular recognition of a variety of ligands at the atomic level and functional roles of the binding proteins.


  • Organizational Affiliation

    Department of Biochemistry, Howard Hughes Medical Institute, Houston, Texas 77030.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
HISTIDINE-BINDING PROTEIN
A, B
238Escherichia coliMutation(s): 0 
UniProt
Find proteins for P0AEU0 (Escherichia coli (strain K12))
Explore P0AEU0 
Go to UniProtKB:  P0AEU0
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0AEU0
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.89 Å
  • R-Value Work: 0.199 
  • R-Value Observed: 0.199 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 39.16α = 90
b = 102.52β = 93.56
c = 64.98γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1994-05-31
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance