1G24

THE CRYSTAL STRUCTURE OF EXOENZYME C3 FROM CLOSTRIDIUM BOTULINUM


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.265 
  • R-Value Work: 0.240 
  • R-Value Observed: 0.240 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.

Han, S.Arvai, A.S.Clancy, S.B.Tainer, J.A.

(2001) J Mol Biol 305: 95-107

  • DOI: https://doi.org/10.1006/jmbi.2000.4292
  • Primary Citation of Related Structures:  
    1G24

  • PubMed Abstract: 

    Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors the catalytic Glu214 within the ARTT motif, and furthermore distinguishes the C3 toxin class by a conserved turn 2 Gln and the VIP2 binary toxin class by a conserved turn 2 Glu for appropriate target side-chain hydrogen-bonding recognition. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for C3 and for the newly defined ARTT toxin family, which acts in the depolymerization of the actin cytoskeleton. This beta5 to beta6 region of the toxin fold represents an experimentally testable and potentially general recognition motif region for other ADP-ribosylating toxins that have a similar beta-structure framework.


  • Organizational Affiliation

    Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB 4, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
EXOENZYME C3
A, B, C, D
211Clostridium botulinumMutation(s): 0 
EC: 2.4.2
UniProt
Find proteins for P15879 (Clostridium botulinum D phage)
Explore P15879 
Go to UniProtKB:  P15879
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP15879
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.265 
  • R-Value Work: 0.240 
  • R-Value Observed: 0.240 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 233.747α = 90
b = 73.757β = 107
c = 73.749γ = 90
Software Package:
Software NamePurpose
AMoREphasing
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-12-18
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-09
    Changes: Data collection, Database references, Refinement description